Micah D. Gearhart
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Micah D. Gearhart.
Molecular and Cellular Biology | 2006
Micah D. Gearhart; Connie M. Corcoran; Joseph A. Wamstad; Vivian J. Bardwell
ABSTRACT The corepressor BCOR potentiates transcriptional repression by the proto-oncoprotein BCL6 and suppresses the transcriptional activity of a common mixed-lineage leukemia fusion partner, AF9. Mutations in human BCOR cause male lethal, X-linked oculofaciocardiodental syndrome. We identified a BCOR complex containing Polycomb group (PcG) and Skp-Cullin-F-box subcomplexes. The PcG proteins include RING1, RYBP, NSPC1, a Posterior Sex Combs homolog, and RNF2, an E3 ligase for the mono-ubiquitylation of H2A. BCOR complex components and mono-ubiquitylated H2A localize to BCL6 targets, indicating that the BCOR complex employs PcG proteins to expand the repertoire of enzymatic activities that can be recruited by BCL6. This also suggests that BCL6 can target PcG proteins to DNA. In addition, the BCOR complex contains components of a second ubiquitin E3 ligase, namely, SKP1 and FBXL10 (JHDM1B). We show that BCOR coimmunoprecipitates isoforms of FBXL10 which contain a JmjC domain that recently has been determined to have histone H3K36 demethylase activity. The recruitment of two distinct classes of E3 ubiquitin ligases and a histone demethylase by BCOR suggests that BCOR uses a unique combination of epigenetic modifications to direct gene silencing.
Cancer Cell | 2016
Wendy Béguelin; Matt Teater; Micah D. Gearhart; María Teresa Fernández; Rebecca L. Goldstein; Mariano G. Cardenas; Katerina Hatzi; Monica Rosen; Hao Shen; Connie M. Corcoran; Michelle Y. Hamline; Randy D. Gascoyne; Ross L. Levine; Omar Abdel-Wahab; Jonathan D. Licht; Rita Shaknovich; Olivier Elemento; Vivian J. Bardwell; Ari Melnick
The EZH2 histone methyltransferase mediates the humoral immune response and drives lymphomagenesis through formation of bivalent chromatin domains at critical germinal center (GC) B cell promoters. Herein we show that the actions of EZH2 in driving GC formation and lymphoma precursor lesions require site-specific binding by the BCL6 transcriptional repressor and the presence of a non-canonical PRC1-BCOR-CBX8 complex. The chromodomain protein CBX8 is induced in GC B cells, binds to H3K27me3 at bivalent promoters, and is required for stable association of the complex and the resulting histone modifications. Moreover, oncogenic BCL6 and EZH2 cooperate to accelerate diffuse large B cell lymphoma (DLBCL) development and combinatorial targeting of these repressors results in enhanced anti-lymphoma activity in DLBCLs.
Nature Structural & Molecular Biology | 2015
Mark W. Murphy; John K. Lee; Sandra Rojo; Micah D. Gearhart; Kayo Kurahashi; Surajit Banerjee; Guy André Loeuille; Anu Bashamboo; Ken McElreavey; David Zarkower; Hideki Aihara; Vivian J. Bardwell
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.
Nucleic Acids Research | 2016
Si Ho Choi; Micah D. Gearhart; Ziyou Cui; Darko Bosnakovski; Minjee Kim; Natalie Schennum; Michael Kyba
Abstract Ectopic expression of the double homeodomain transcription factor DUX4 causes facioscapulohumeral muscular dystrophy (FSHD). Mechanisms of action of DUX4 are currently unknown. Using immortalized human myoblasts with a titratable DUX4 transgene, we identify by mass spectrometry an interaction between the DUX4 C-terminus and the histone acetyltransferases p300/CBP. Chromatin immunoprecipitation shows that DUX4 recruits p300 to its target gene, ZSCAN4, displaces histone H3 from the center of its binding site, and induces H3K27Ac in its vicinity, but C-terminal deleted DUX4 does not. We show that a DUX4 minigene, bearing only the homeodomains and C-terminus, is transcriptionally functional and cytotoxic, and that overexpression of a nuclear targeted C-terminus impairs the ability of WT DUX4 to interact with p300 and to regulate target genes. Genomic profiling of DUX4, histone H3, and H3 modifications reveals that DUX4 binds two classes of loci: DNase accessible H3K27Ac-rich chromatin and inaccessible H3K27Ac-depleted MaLR-enriched chromatin. At this latter class, it acts as a pioneer factor, recruiting H3K27 acetyltransferase activity and opening the locus for transcription. In concert with local increased H3K27Ac, the strong H3K27Ac peaks at distant sites are significantly depleted of H3K27Ac, thus DUX4 uses its C-terminus to induce a global reorganization of H3K27 acetylation.
Development | 2014
Teng Zhang; Mark W. Murphy; Micah D. Gearhart; Vivian J. Bardwell; David Zarkower
In mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here, we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) in mice and find that Dmrt6 plays a crucial role in directing germ cells through the mitotic-to-meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain, a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing inappropriate expression of spermatogonial differentiation factors, including SOHLH1, SOHLH2 and DMRT1 as well as the meiotic initiation factor STRA8, and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant germ cells can complete spermatogonial differentiation and enter meiosis, but they show defects in meiotic chromosome pairing, establishment of the XY body and processing of recombination foci, and they mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 chromatin immunoprecipitation sequencing suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis.
Leukemia | 2016
Qi Cao; Micah D. Gearhart; Sigal Gery; Seyedmehdi Shojaee; Henry Yang; Haibo Sun; De-Chen Lin; J. W. Bai; M. Mead; Z. Zhao; Q. Chen; Wenwen Chien; Serhan Alkan; T. Alpermann; Torsten Haferlach; Markus Müschen; Vivian J. Bardwell; Hp Koeffler
BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes.
Journal of Immunology | 2015
Jessica A. Yang; Noah J. Tubo; Micah D. Gearhart; Vivian J. Bardwell; Marc K. Jenkins
CD4+ germinal center (GC)-T follicular helper (Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor Bcl6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the Bcl6 BTB domain, influences GC-Tfh differentiation. T cell–targeted BCOR deficiency led to a substantial loss of peptide:MHC class II–specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell–expressed BCOR is critical for optimal GC-Tfh cell differentiation and humoral immunity.
International Journal of Molecular Sciences | 2015
Micah D. Gearhart; Jami R. Erickson; Andrew Walsh; Karen Echeverri
The Mexican axolotl salamander (Ambystoma mexicanum) is one member of a select group of vertebrate animals that have retained the amazing ability to regenerate multiple body parts. In addition to being an important model system for regeneration, the axolotl has also contributed extensively to studies of basic development. While many genes known to play key roles during development have now been implicated in various forms of regeneration, much of the regulatory apparatus controlling the underlying molecular circuitry remains unknown. In recent years, microRNAs have been identified as key regulators of gene expression during development, in many diseases and also, increasingly, in regeneration. Here, we have used deep sequencing combined with qRT-PCR to undertake a comprehensive identification of microRNAs involved in regulating regeneration in the axolotl. Specifically, among the microRNAs that we have found to be expressed in axolotl tissues, we have identified 4564 microRNA families known to be widely conserved among vertebrates, as well as 59,811 reads of putative novel microRNAs. These findings support the hypothesis that microRNAs play key roles in managing the precise spatial and temporal patterns of gene expression that ensures the correct regeneration of missing tissues.
Genetics | 2017
Tatsuya Tsukamoto; Micah D. Gearhart; Caroline A. Spike; Gabriela Huelgas-Morales; Makaela Mews; Peter R. Boag; Traude H. Beilharz; David Greenstein
An extended meiotic prophase is a hallmark of oogenesis. Hormonal signaling activates the CDK1/cyclin B kinase to promote oocyte meiotic maturation, which involves nuclear and cytoplasmic events. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation. Cytoplasmic maturation involves major changes in oocyte protein translation and cytoplasmic organelles and is poorly understood. In the nematode Caenorhabditis elegans, sperm release the major sperm protein (MSP) hormone to promote oocyte growth and meiotic maturation. Large translational regulatory ribonucleoprotein (RNP) complexes containing the RNA-binding proteins OMA-1, OMA-2, and LIN-41 regulate meiotic maturation downstream of MSP signaling. To understand the control of translation during meiotic maturation, we purified LIN-41-containing RNPs and characterized their protein and RNA components. Protein constituents of LIN-41 RNPs include essential RNA-binding proteins, the GLD-2 cytoplasmic poly(A) polymerase, the CCR4-NOT deadenylase complex, and translation initiation factors. RNA sequencing defined messenger RNAs (mRNAs) associated with both LIN-41 and OMA-1, as well as sets of mRNAs associated with either LIN-41 or OMA-1. Genetic and genomic evidence suggests that GLD-2, which is a component of LIN-41 RNPs, stimulates the efficient translation of many LIN-41-associated transcripts. We analyzed the translational regulation of two transcripts specifically associated with LIN-41 which encode the RNA regulators SPN-4 and MEG-1. We found that LIN-41 represses translation of spn-4 and meg-1, whereas OMA-1 and OMA-2 promote their expression. Upon their synthesis, SPN-4 and MEG-1 assemble into LIN-41 RNPs prior to their functions in the embryo. This study defines a translational repression-to-activation switch as a key element of cytoplasmic maturation.
Journal of The American Society of Nephrology | 2017
Karam Aboudehen; Lama Noureddine; Patricia Cobo-Stark; Svetlana Avdulov; Shayan Farahani; Micah D. Gearhart; Daniel G. Bichet; Marco Pontoglio; Vishal Patel; Peter Igarashi
The transcription factor hepatocyte nuclear factor-1β (HNF-1β) is essential for normal kidney development and function. Inactivation of HNF-1β in mouse kidney tubules leads to early-onset cyst formation and postnatal lethality. Here, we used Pkhd1/Cre mice to delete HNF-1β specifically in renal collecting ducts (CDs). CD-specific HNF-1β mutant mice survived long term and developed slowly progressive cystic kidney disease, renal fibrosis, and hydronephrosis. Compared with wild-type littermates, HNF-1β mutant mice exhibited polyuria and polydipsia. Before the development of significant renal structural abnormalities, mutant mice exhibited low urine osmolality at baseline and after water restriction and administration of desmopressin. However, mutant and wild-type mice had similar plasma vasopressin and solute excretion levels. HNF-1β mutant kidneys showed increased expression of aquaporin-2 mRNA but mislocalized expression of aquaporin-2 protein in the cytoplasm of CD cells. Mutant kidneys also had decreased expression of the UT-A urea transporter and collectrin, which is involved in apical membrane vesicle trafficking. Treatment of HNF-1β mutant mIMCD3 cells with hypertonic NaCl inhibited the induction of osmoregulated genes, including Nr1h4, which encodes the transcription factor FXR that is required for maximal urinary concentration. Chromatin immunoprecipitation and sequencing experiments revealed HNF-1β binding to the Nr1h4 promoter in wild-type kidneys, and immunoblot analysis revealed downregulated expression of FXR in HNF-1β mutant kidneys. These findings reveal a novel role of HNF-1β in osmoregulation and identify multiple mechanisms, whereby mutations of HNF-1β produce defects in urinary concentration.
Collaboration
Dive into the Micah D. Gearhart's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs