Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Fox is active.

Publication


Featured researches published by Michael A. Fox.


Journal of Neurochemistry | 2002

Increased Activity-Regulating and Neuroprotective Efficacy of α-Secretase-Derived Secreted Amyloid Precursor Protein Conferred by a C-Terminal Heparin-Binding Domain

Katsutoshi Furukawa; Bryce L. Sopher; Russell E. Rydel; James G. Begley; Dao G. Pham; George M. Martin; Michael A. Fox; Mark P. Mattson

Abstract: Proteolytic cleavage of β‐amyloid precursor protein (βAPP) by α‐secretase results in release of one secreted form (sAPP) of APP (sAPPα), whereas cleavage by β‐secretase releases a C‐terminally truncated sAPP (sAPPβ) plus amyloid β‐peptide (Aβ). βAPP mutations linked to some inherited forms of Alzheimers disease may alter its processing such that levels of sAPPα are reduced and levels of sAPPβ increased. sAPPαs may play important roles in neuronal plasticity and survival, whereas Aβ can be neurotoxic. sAPPα was ∼100‐fold more potent than sAPPβ in protecting hippocampal neurons against excitotoxicity, Aβ toxicity, and glucose deprivation. Whole‐cell patch clamp and calcium imaging analyses showed that sAPPβ was less effective than sAPPα in suppressing synaptic activity, activating K+ channels, and attenuating calcium responses to glutamate. Using various truncated sAPPα and sAPPβ APP695 products generated by eukaryotic and prokaryotic expression systems, and synthetic sAPP peptides, the activity of sAPPα was localized to amino acids 591–612 at the C‐terminus. Heparinases greatly reduced the actions of sAPPαs, indicating a role for a heparin‐binding domain at the C‐terminus of sAPPα in receptor activation. These findings indicate that alternative processing of βAPP has profound effects on the bioactivity of the resultant sAPP products and suggest that reduced levels of sAPPα could contribute to neuronal degeneration in Alzhiemers disease.


Nature Genetics | 2007

Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia

François Gros-Louis; Nicolas Dupré; Patrick A. Dion; Michael A. Fox; Sandra Laurent; Steve Verreault; Joshua R. Sanes; Jean-Pierre Bouchard; Guy A. Rouleau

The past decade has seen great advances in unraveling the biological basis of hereditary ataxias. Molecular studies of spinocerebellar ataxias (SCA) have extended our understanding of dominant ataxias. Causative genes have been identified for a few autosomal recessive ataxias: Friedreichs ataxia, ataxia with vitamin E deficiency, ataxia telangiectasia, recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1 (refs. 6,7) and type 2 (ref. 8). Nonetheless, genes remain unidentified for most recessive ataxias. Additionally, pure cerebellar ataxias, which represent up to 20% of all ataxias, remain poorly studied with only two causative dominant genes being described: CACNA1A (ref. 9) and SPTBN2 (ref. 10). Here, we report a newly discovered form of recessive ataxia in a French-Canadian cohort and show that SYNE1 mutations are causative in all of our kindreds, making SYNE1 the first identified gene responsible for a recessively inherited pure cerebellar ataxia.


Development | 2005

Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations

Heather Flanagan-Steet; Michael A. Fox; Dirk Meyer; Joshua R. Sanes

Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.


Cell | 2007

Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals

Michael A. Fox; Joshua R. Sanes; Dorin-Bogdan Borza; Veraragavan P. Eswarakumar; Reinhard Fässler; Billy G. Hudson; Simon W. M. John; Yoshifumi Ninomiya; Vadim Pedchenko; Samuel L. Pfaff; Michelle N. Rheault; Yoshikazu Sado; Yoav Segal; Michael J. Werle; Hisashi Umemori

Target-derived factors organize synaptogenesis by promoting differentiation of nerve terminals at synaptic sites. Several candidate organizing molecules have been identified based on their bioactivities in vitro, but little is known about their roles in vivo. Here, we show that three sets of organizers act sequentially to pattern motor nerve terminals: FGFs, beta2 laminins, and collagen alpha(IV) chains. FGFs of the 7/10/22 subfamily and broadly distributed collagen IV chains (alpha1/2) promote clustering of synaptic vesicles as nerve terminals form. beta2 laminins concentrated at synaptic sites are dispensable for embryonic development of nerve terminals but are required for their postnatal maturation. Synapse-specific collagen IV chains (alpha3-6) accumulate only after synapses are mature and are required for synaptic maintenance. Thus, multiple target-derived signals permit discrete control of the formation, maturation, and maintenance of presynaptic specializations.


The Journal of Comparative Neurology | 2007

Synaptotagmin I and II are present in distinct subsets of central synapses.

Michael A. Fox; Joshua R. Sanes

Synaptotagmin 1 and 2 (syt 1, syt 2) are synaptic vesicle‐associated membrane proteins that act as calcium sensors for fast neurotransmitter release from presynaptic nerve terminals. Here we show that widely used monoclonal antibodies, mab 48 and znp‐1, stain nerve terminals in multiple species and, in mouse, recognize syt 1 and syt 2, respectively. With these antibodies, we examined the synaptic localization of these synaptotagmin isoforms in the mouse central nervous system. Syt 1 and syt 2 are localized predominantly to different subsets of synapses in retina, hippocampus, cerebellum, and median nucleus of the trapezoid body (MNTB). In the MNTB, syt 1 and syt 2 are present in different presynaptic terminals on the same postsynaptic principal neuron. In retina, horizontal and OFF‐bipolar cell terminals contain syt 2, whereas most other terminals contain syt 1. Syt 1 localization in the immature retina resembles that seen in adult; however, syt 2 localization appears strikingly different at perinatal ages and continues to change dramatically prior to eye opening. For example, starburst amacrine cells, which lack syt 2 in adult retina, transiently express syt 2 during the first 2 postnatal weeks. In addition to differences in spatial and temporal distribution, species‐specific differences in synaptotagmin localization were observed in retina and cerebellum. The cell‐, temporal‐, and species‐specific expression of synaptotagmin isoforms suggests that each may have distinct functions in neurotransmitter release. J. Comp. Neurol. 503:280–296, 2007.


PLOS ONE | 2012

Shared Resistance to Aging and ALS in Neuromuscular Junctions of Specific Muscles

Gregorio Valdez; Juan Carlos Tapia; Jeff W. Lichtman; Michael A. Fox; Joshua R. Sanes

Normal aging and neurodegenerative diseases both lead to structural and functional alterations in synapses. Comparison of synapses that are generally similar but respond differently to insults could provide the basis for discovering mechanisms that underlie susceptibility or resistance to damage. Here, we analyzed skeletal neuromuscular junctions (NMJs) in 16 mouse muscles to seek such differences. We find that muscles respond in one of three ways to aging. In some, including most limb and trunk muscles, age-related alterations to NMJs are progressive and extensive during the second postnatal year. NMJs in other muscles, such as extraocular muscles, are strikingly resistant to change. A third set of muscles, including several muscles of facial expression and the external anal sphinter, succumb to aging but not until the third postnatal year. We asked whether susceptible and resistant muscles differed in rostrocaudal or proximodistal position, source of innervation, motor unit size, or fiber type composition. Of these factors, muscle innervation by brainstem motor neurons correlated best with resistance to age-related decline. Finally, we compared synaptic alterations in normally aging muscles to those in a mouse model of amyotrophic lateral sclerosis (ALS). Patterns of resistance and susceptibility were strikingly correlated in the two conditions. Moreover, damage to NMJs in aged muscles correlated with altered expression and distribution of CRMP4a and TDP-43, which are both altered in motor neurons affected by ALS. Together, these results reveal novel structural, regional and molecular parallels between aging and ALS.


Journal of Neurochemistry | 2006

Seeking long-term relationship: axon and target communicate to organize synaptic differentiation.

Michael A. Fox; Hisashi Umemori

Synapses form after growing axons recognize their appropriate targets. The subsequent assembly of aligned pre and postsynaptic specializations is critical for synaptic function. This highly precise apposition of presynaptic elements (i.e. active zones) to postsynaptic specializations (i.e. neurotransmitter receptor clusters) strongly suggests that communication between the axon and target is required for synaptic differentiation. What trans‐synaptic factors drive such differentiation at vertebrate synapses? First insights into the answers to this question came from studies at the neuromuscular junction (NMJ), where axon‐derived agrin and muscle‐derived laminin β2 induce post and presynaptic differentiation, respectively. Recent work has suggested that axon‐ and target‐derived factors similarly drive synaptic differentiation at central synapses. Specifically, WNT‐7a, neuroligin, synaptic cell adhesion molecule (SynCAM) and fibroblast growth factor‐22 (FGF‐22) have all been identified as target‐derived presynaptic organizers, whereas axon‐derived neuronal activity regulated pentraxin (Narp), ephrinB and neurexin reciprocally co‐ordinate postsynaptic differentiation. In addition to these axon‐ and target‐derived inducers of synaptic differentiation, factors released from glial cells have also been implicated in regulating synapse assembly. Together, these recent findings have profoundly advanced our understanding of how precise appositions are established during vertebrate nervous system development.


Biological Psychiatry | 2013

Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice.

Sylvia Fitting; Bogna M. Ignatowska-Jankowska; Cecilia Bull; Robert P. Skoff; Aron H. Lichtman; Laura E. Wise; Michael A. Fox; Jianmin Su; Alexandre E. Medina; Thomas E. Krahe; Pamela E. Knapp; William Guido; Kurt F. Hauser

BACKGROUND Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND), including memory dysfunction, continue to be a major clinical manifestation of HIV type-1 infection. Viral proteins released by infected glia are thought to be the principal triggers of inflammation and bystander neuronal injury and death, thereby driving key symptomatology of HAND. METHODS We used a glial fibrillary acidic protein-driven, doxycycline-inducible HIV type-1 transactivator of transcription (Tat) transgenic mouse model and examined structure-function relationships in hippocampal pyramidal cornu ammonis 1 (CA1) neurons using morphologic, electrophysiological (long-term potentiation [LTP]), and behavioral (Morris water maze, fear-conditioning) approaches. RESULTS Tat induction caused a variety of different inclusions in astrocytes characteristic of lysosomes, autophagic vacuoles, and lamellar bodies, which were typically present within distal cytoplasmic processes. In pyramidal CA1 neurons, Tat induction reduced the number of apical dendritic spines, while disrupting the distribution of synaptic proteins (synaptotagmin 2 and gephyrin) associated with inhibitory transmission but with minimal dendritic pathology and no evidence of pyramidal neuron death. Electrophysiological assessment of excitatory postsynaptic field potential at Schaffer collateral/commissural fiber-CA1 synapses showed near total suppression of LTP in mice expressing Tat. The loss in LTP coincided with disruptions in learning and memory. CONCLUSIONS Tat expression in the brain results in profound functional changes in synaptic physiology and in behavior that are accompanied by only modest structural changes and minimal pathology. Tat likely contributes to HAND by causing molecular changes that disrupt synaptic organization, with inhibitory presynaptic terminals containing synaptotagmin 2 appearing especially vulnerable.


Molecular and Cellular Neuroscience | 2003

Phosphodiesterase-Iα/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination

Michael A. Fox; Raymond J. Colello; Wendy B. Macklin; Babette Fuss

The initial stages of central nervous system (CNS) myelination require complex interactions of oligodendrocytes with their surrounding extracellular environment. In the present study, we demonstrate that commencing with active myelination oligodendrocytes express phosphodiesterase-Ialpha/autotaxin [PD-Ialpha/ATX (NPP-2)] as a non-membrane-associated extracellular factor. As such a component of the extracellular environment, PD-Ialpha/ATX has the ability to antagonize the adhesive interactions between oligodendroglial cells and known extracellular matrix (ECM) molecules present in the developing CNS. This counteradhesion requires intracellular signaling through heterotrimeric G proteins on fibronectin substrates and thus represents an active cellular response. Similar counteradhesive effects in other systems have been attributed to the activity of matricellular proteins, which support intermediate stages of cell adhesion thought to facilitate cellular locomotion and remodeling. Thus, the release of PD-Ialpha/ATX may be critically involved in the regulation of the initial stages of myelination, i.e., oligodendrocyte remodeling, via modulation of oligodendrocyte-ECM interactions in a matricellular fashion.


The Journal of Neuroscience | 2010

Muscle-Derived Collagen XIII Regulates Maturation of the Skeletal Neuromuscular Junction

Anne Latvanlehto; Michael A. Fox; Raija Sormunen; Hongmin Tu; Tuomo Oikarainen; Anu Koski; Nikolay Naumenko; Anastasia Shakirzyanova; Mika Kallio; Mika Ilves; Rashid Giniatullin; Joshua R. Sanes; Taina Pihlajaniemi

Formation, maturation, stabilization, and functional efficacy of the neuromuscular junction (NMJ) are orchestrated by transsynaptic and autocrine signals embedded within the synaptic cleft. Here, we demonstrate that collagen XIII, a nonfibrillar transmembrane collagen, is another such signal. We show that collagen XIII is expressed by muscle and its ectodomain can be proteolytically shed into the extracellular matrix. The collagen XIII protein was found present in the postsynaptic membrane and synaptic basement membrane. To identify a role for collagen XIII at the NMJ, mice were generated lacking this collagen. Morphological and ultrastructural analysis of the NMJ revealed incomplete adhesion of presynaptic and postsynaptic specializations in collagen XIII-deficient mice of both genders. Strikingly, Schwann cells erroneously enwrapped nerve terminals and invaginated into the synaptic cleft, resulting in a decreased contact surface for neurotransmission. Consistent with morphological findings, electrophysiological studies indicated both postsynaptic and presynaptic defects in Col13a1−/− mice, such as decreased amplitude of postsynaptic potentials, diminished probabilities of spontaneous release and reduced readily releasable neurotransmitter pool. To identify the role of collagen XIII at the NMJ, shed ectodomain of collagen XIII was applied to cultured myotubes, and it was found to advance acetylcholine receptor (AChR) cluster maturation. Together with the delay in AChR cluster development observed in collagen XIII-deficient mutants in vivo, these results suggest that collagen XIII plays an autocrine role in postsynaptic maturation of the NMJ. Altogether, the results presented here reveal that collagen XIII is a novel muscle-derived cue necessary for the maturation and function of the vertebrate NMJ.

Collaboration


Dive into the Michael A. Fox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Guido

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Babette Fuss

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin M. Brooks

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Colello

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge