Thomas E. Krahe
VCU Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas E. Krahe.
Biological Psychiatry | 2013
Sylvia Fitting; Bogna M. Ignatowska-Jankowska; Cecilia Bull; Robert P. Skoff; Aron H. Lichtman; Laura E. Wise; Michael A. Fox; Jianmin Su; Alexandre E. Medina; Thomas E. Krahe; Pamela E. Knapp; William Guido; Kurt F. Hauser
BACKGROUND Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND), including memory dysfunction, continue to be a major clinical manifestation of HIV type-1 infection. Viral proteins released by infected glia are thought to be the principal triggers of inflammation and bystander neuronal injury and death, thereby driving key symptomatology of HAND. METHODS We used a glial fibrillary acidic protein-driven, doxycycline-inducible HIV type-1 transactivator of transcription (Tat) transgenic mouse model and examined structure-function relationships in hippocampal pyramidal cornu ammonis 1 (CA1) neurons using morphologic, electrophysiological (long-term potentiation [LTP]), and behavioral (Morris water maze, fear-conditioning) approaches. RESULTS Tat induction caused a variety of different inclusions in astrocytes characteristic of lysosomes, autophagic vacuoles, and lamellar bodies, which were typically present within distal cytoplasmic processes. In pyramidal CA1 neurons, Tat induction reduced the number of apical dendritic spines, while disrupting the distribution of synaptic proteins (synaptotagmin 2 and gephyrin) associated with inhibitory transmission but with minimal dendritic pathology and no evidence of pyramidal neuron death. Electrophysiological assessment of excitatory postsynaptic field potential at Schaffer collateral/commissural fiber-CA1 synapses showed near total suppression of LTP in mice expressing Tat. The loss in LTP coincided with disruptions in learning and memory. CONCLUSIONS Tat expression in the brain results in profound functional changes in synaptic physiology and in behavior that are accompanied by only modest structural changes and minimal pathology. Tat likely contributes to HAND by causing molecular changes that disrupt synaptic organization, with inhibitory presynaptic terminals containing synaptotagmin 2 appearing especially vulnerable.
The Journal of Neuroscience | 2011
Thomas E. Krahe; Rana N. El-Danaf; Emily K. Dilger; Scott Henderson; William Guido
A fundamental feature of the mammalian visual system is the presence of separate channels that work in parallel to efficiently extract and analyze specific elements of a visual scene. Despite the extensive use of the mouse as a model system, it is not clear whether such parallel organization extends beyond the retina to subcortical structures, such as the dorsal lateral geniculate (dLGN) of thalamus. To begin to address this, we examined the morphology of biocytin-filled relay cells recorded in dLGN of mice. Based on a quantitative assessment of their dendritic architecture, we found that even at early postnatal ages relay cells could be readily classified as X-like (biconical), Y-like (symmetrical), or W-like (hemispheric) and that each cell type was regionally specified in dLGN. X-like cells were confined primarily to the monocular ventral region of dLGN. Y-like cells occupied a central core that also contained ipsilateral eye projections, whereas W-like cells were found along the perimeter of dLGN. Similar to cat, Y-like cells were more prevalent than X- and W-like cells, and X-like cells tended to be smaller than other cell types. However, the dendritic fields of X- and W-like cells did not exhibit an orientation bias with respect to optic tract or boundaries of dLGN. Although we found clear morphological differences among relay cells, an analysis of their electrophysiological properties did not reveal any additional distinguishing characteristics. Overall, these data coupled with recent observations in the retina suggest that the mouse has many of the hallmark features of a system-wide parallel organization.
The Journal of Comparative Neurology | 2010
Martha E. Bickford; Arkadiusz S. Slusarczyk; Emily K. Dilger; Thomas E. Krahe; Can Kucuk; William Guido
The dorsal lateral geniculate nucleus (dLGN) of the mouse has emerged as a model system in the study of thalamic circuit development. However, there is still a lack of information regarding how and when various types of retinal and nonretinal synapses develop. We examined the synaptic organization of the developing mouse dLGN in the common pigmented C57/BL6 strain, by recording the synaptic responses evoked by electrical stimulation of optic tract axons, and by investigating the ultrastructure of identified synapses. At early postnatal ages (P14), when optic tract stimulation routinely evoked an excitatory postsynaptic potential/inhibitory postsynaptic potential (EPSP/IPSP) sequence, with the latter having both a GABAA and GABAB component. Electrophysiological and ultrastructural observations were consistent. At P7, many synapses were present, but synaptic profiles lacked the ultrastructural features characteristic of the adult dLGN, and little γ‐aminobutyric acid (GABA) could be detected by using immunocytochemical techniques. In contrast, by P14, GABA staining was robust, mature synaptic profiles of retinal and nonretinal origin were easily distinguished, and the size and proportion of synaptic contacts were similar to those of the adult. The emergence of nonretinal synapses coincides with pruning of retinogeniculate connections, and the transition of retinal activity from spontaneous to visually driven. These results indicate that the synaptic architecture of the mouse dLGN is similar to that of other higher mammals, and thus provides further support for its use as a model system for visual system development. J. Comp. Neurol. 518:622–635, 2010.
The Journal of Neuroscience | 2006
Alexandre E. Medina; Thomas E. Krahe; Ary S. Ramoa
Although some studies showed the efficacy of phosphodiesterase (PDE) inhibitors as neuronal plasticity enhancers, little is known about the effectiveness of these drugs to improve plasticity in cases of mental retardation. Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in the western world. Using a combination of electrophysiological and optical imaging techniques, we show here that vinpocetine, a PDE type I inhibitor, restores ocular dominance plasticity in the ferret model of fetal alcohol exposure. Our finding should contribute to a better understanding and treatment of cognitive deficits associated with mental disorders, such as FAS.
Neuron | 2005
Thomas E. Krahe; Alexandre E. Medina; Ruben Ernesto de Bittencourt‐Navarrete; Raymond J. Colello; Ary S. Ramoa
Monocular deprivation (MD) for a few days during a critical period of development leads to loss of cortical responses to stimulation of the deprived eye. Despite the profound effects of MD on cortical function, optical imaging of intrinsic signals and single-unit recordings revealed that deprived eye responses and orientation selectivity recovered a few hours after restoration of normal binocular vision. Moreover, recovery of deprived eye responses was not dependent upon mRNA translation, but required cortical activity. Interestingly, this fast recovery and protein synthesis independence was restricted to the hemisphere contralateral to the previously deprived eye. Collectively, these results implicate a relatively simple mechanistic process in the reactivation of a latent set of connections following restoration of binocular vision and provide new insight into how recovery of cortical function can rapidly occur in response to changes in sensory experience.
The Journal of Neuroscience | 2015
Martha E. Bickford; Na Zhou; Thomas E. Krahe; Gubbi Govindaiah; William Guido
The dorsal lateral geniculate nucleus (dLGN) is a model system for understanding thalamic organization and the classification of inputs as “drivers” or “modulators.” Retinogeniculate terminals provide the primary excitatory drive for the relay of information to visual cortex (V1), while nonretinal inputs act in concert to modulate the gain of retinogeniculate signal transmission. How do inputs from the superior colliculus, a visuomotor structure, fit into this schema? Using a variety of anatomical, optogenetic, and in vitro physiological techniques in mice, we show that dLGN inputs from the superior colliculus (tectogeniculate) possess many of the ultrastructural and synaptic properties that define drivers. Tectogeniculate and retinogeniculate terminals converge to innervate one class of dLGN neurons within the dorsolateral shell, the primary terminal domain of direction-selective retinal ganglion cells. These dLGN neurons project to layer I of V1 to form synaptic contacts with dendrites of deeper-layer neurons. We suggest that tectogeniculate inputs act as “backseat drivers,” which may alert shell neurons to movement commands generated by the superior colliculus. SIGNIFICANCE STATEMENT The conventional view of the dorsal lateral geniculate nucleus (dLGN) is that of a simple relay of visual information between the retina and cortex. Here we show that the dLGN receives strong excitatory input from both the retina and the superior colliculus. Thus, the dLGN is part of a specialized visual channel that provides cortex with convergent information about stimulus motion and eye movement and positioning.
Neuroscience Letters | 2010
Claudio C. Filgueiras; Thomas E. Krahe; Alexandre E. Medina
Deficits in learning and memory have been extensively observed in animal models of fetal alcohol spectrum disorders (FASD). Here we use the Morris maze to test whether vinpocetine, a phosphodiesterase type 1 inhibitor, restores learning performance in rats exposed to alcohol during the third trimester equivalent of human gestation. Long Evans rats received ethanol (5g/kg i.p.) or saline on alternate days from postnatal day (P) 4 to P10. Two weeks later (P25), the latency to find a hidden platform was evaluated (2 trials per day spaced at 40-min inter-trial intervals) during 4 consecutive days. Vinpocetine treatment started on the first day of behavioral testing: animals received vinpocetine (20mg/kg i.p.) or vehicle solution every other day until the end of behavioral procedures. Early alcohol exposure significantly affected the performance to find the hidden platform. The average latency of ethanol-exposed animals was significantly higher than that observed for the control group. Treatment of alcohol-exposed animals with vinpocetine restored their performance to control levels. Our results show that inhibition of PDE1 improves learning and memory deficits in rats early exposed to alcohol and provide evidence for the potential therapeutic use of vinpocetine in FASD.
Journal of Neuroscience Research | 2008
Alexandre E. Medina; Thomas E. Krahe
Fetal Alcohol Spectrum Disorder (FASD) is characterized by a constellation of behavioral and physiological abnormalities, including learning and sensory deficits. There is growing evidence that abnormalities of neuronal plasticity underlie these deficits. However, the cellular and molecular mechanisms by which prenatal alcohol exposure disrupts neuronal plasticity remain elusive. Recently, studies with the barrel and the visual cortex as models to study the effects of early alcohol exposure on neuronal plasticity shed light on this subject. In this Mini‐Review, we discuss the effects of ethanol exposure during development on neuronal plasticity and suggest environmental and pharmacological approaches to ameliorate these problems.
The Journal of Neuroscience | 2013
Tania A. Seabrook; Rana N. El-Danaf; Thomas E. Krahe; Michael A. Fox; William Guido
Neurons in layer VI of visual cortex represent one of the largest sources of nonretinal input to the dorsal lateral geniculate nucleus (dLGN) and play a major role in modulating the gain of thalamic signal transmission. However, little is known about how and when these descending projections arrive and make functional connections with dLGN cells. Here we used a transgenic mouse to visualize corticogeniculate projections to examine the timing of cortical innervation in dLGN. Corticogeniculate innervation occurred at postnatal ages and was delayed compared with the arrival of retinal afferents. Cortical fibers began to enter dLGN at postnatal day 3 (P3) to P4, a time when retinogeniculate innervation is complete. However, cortical projections did not fully innervate dLGN until eye opening (P12), well after the time when retinal inputs from the two eyes segregate to form nonoverlapping eye-specific domains. In vitro thalamic slice recordings revealed that newly arriving cortical axons form functional connections with dLGN cells. However, adult-like responses that exhibited paired pulse facilitation did not fully emerge until 2 weeks of age. Finally, surgical or genetic elimination of retinal input greatly accelerated the rate of corticogeniculate innervation, with axons invading between P2 and P3 and fully innervating dLGN by P8 to P10. However, recordings in genetically deafferented mice showed that corticogeniculate synapses continued to mature at the same rate as controls. These studies suggest that retinal and cortical innervation of dLGN is highly coordinated and that input from retina plays an important role in regulating the rate of corticogeniculate innervation.
The Journal of Neuroscience | 2010
Arco P. Paul; Fernanda Pohl-Guimaraes; Thomas E. Krahe; Cláudio C. Filgueiras; Crystal L. Lantz; Raymond J. Colello; Weili Wang; Alexandre E. Medina
Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in fetal alcohol spectrum disorders (FASD). Recently, we showed that third trimester alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating transcription factors such as the cAMP response element binding protein (CREB) and the serum response factor (SRF). SRF is important for many plasticity processes such as LTP, LTD, spine motility, and axonal pathfinding. Here we attempt to rescue OD plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively active form of SRF during the period of monocular deprivation. Using optical imaging of intrinsic signals and single-unit recordings, we observed that overexpression of a constitutively active form of SRF, but neither its dominant-negative nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed throughout the extent of the primary visual cortex and most cells infected by the virus were positive for GFAP rather than NeuN. This finding suggests that overexpression of SRF in astrocytes may reduce the deficits in neuronal plasticity seen in models of FASD.