Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Kegerise is active.

Publication


Featured researches published by Michael A. Kegerise.


aiaa/ceas aeroacoustics conference | 2002

Experimental Feedback Control of Flow Induced Cavity Tones

Randolph H. Cabell; Michael A. Kegerise; David E. Cox; Gary P. Gibbs

Discrete-time, linear quadratic methods were used to design feedback controllers for reducing tones generated by flow over a cavity. The dynamics of a synthetic-jet actuator mounted at the leading edge of the cavity as observed by two microphones in the cavity were modeled over a broad frequency range using state space models computed from experimental data. Variations in closed loop performance as a function of model order, control order, control bandwidth, and state estimator design were studied using a cavity in the Probe Calibration Tunnel at NASA Langley Research Center. The controller successfully reduced the levels of multiple cavity tones at the tested flow speeds of Mach 0.275,0.35, and 0.45. In some cases, the closed loop results were limited by excitation of sidebands of the cavity tones, or the creation of new tones at frequencies away from the cavity tones. The models were not able to account for nonlinear dynamics, such as interactions between tones at different frequencies. Nonetheless, the results validate the combination of optimal control and experimentally generated state space models for the cavity tone problem.


48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010

Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

Meelan M. Choudhari; Fei Li; Minwei Wu; Chau-Lyan Chang; Jack R. Edwards; Michael A. Kegerise; Rudolph A. King

Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.


AIAA Journal | 2015

Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

Ponnampalam Balakumar; Michael A. Kegerise

The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary-layer flows over a straight cone and two flared cones. The steady and the unsteady flowfields were obtained by solving the two-dimensional Navier–Stokes equations in axisymmetric coordinates using the fifth-order-accurate weighted essentially nonoscillatory scheme for space discretization and using a third-order total-variation-diminishing Runge–Kutta scheme for time integration. The mean boundary-layer profiles were analyzed using local stability and nonlocal parabolized stability equations methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time-accurate simulations were performed. The adverse pressure gradient was found to affect the boundary-layer stability in two important ways. First, the frequency of the most...


40th Fluid Dynamics Conference and Exhibit | 2010

High-Speed Boundary-Layer Transition Induced by an Isolated Roughness Element

Michael A. Kegerise; Lewis R. Owens; Rudolph A. King

Progress on an experimental effort to quantify the instability mechanisms associated with roughness-induced transition in a high-speed boundary layer is reported in this paper. To simulate the low-disturbance environment encountered during high-altitude flight, the experimental study was performed in the NASA-Langley Mach 3.5 Supersonic Low-Disturbance Tunnel. A flat plate trip sizing study was performed first to identify the roughness height required to force transition. That study, which included transition onset measurements under both quiet and noisy freestream conditions, confirmed the sensitivity of roughness-induced transition to freestream disturbance levels. Surveys of the laminar boundary layer on a 7deg half-angle sharp-tipped cone were performed via hot-wire anemometry and pitot-pressure measurements. The measured mean mass-flux and Mach-number profiles agreed very well with computed mean-flow profiles. Finally, surveys of the boundary layer developing downstream of an isolated roughness element on the cone were performed. The measurements revealed an instability in the far wake of the roughness element that grows exponentially and has peak frequencies in the 150 to 250 kHz range.


48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010

Orbiter Boundary Layer Transition Prediction Tool Enhancements

Scott A. Berry; Rudolph A. King; Michael A. Kegerise; William Wood; Catherine B. McGinley; Karen T. Berger; Brian P. Anderson

Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.


48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010

Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

Charles H. Campbell; Rudolph A. King; Scott A. Berry; Michael A. Kegerise; Thomas J. Horvath

Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASAs entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon similar correlation techniques that have been is use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. Recent entry flight testing performed with the Orbiter Discovery now provides a means to validate this engineering correlation approach to higher confidence. These results only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, and to discuss the characteristics which are desirable in a next generation advancement. The details of the paper will review the experimental facilities and techniques that were utilized to perform the implementation of the Orbiter RTF BLT Vsn 2 prediction capability. Statistically significant results for multiple engineering correlations from a ground testing campaign will be reviewed in order to describe why only certain correlations were selected for complete implementation to support the Shuttle Program. Historical Orbiter flight data on early boundary layer transition due to protruding gap fillers will be described in relation to the selected empirical correlations. In addition, Orbiter entry flight testing results from the BLT Flight Experiment will be discussed in relation to these correlations. Applicability of such correlations to the entry design problem will be reviewed, and finally a perspective on the desirable characteristics for a next generation capability based on high fidelity physical models will be provided.


49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2011

Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows

Lewis R. Owens; Michael A. Kegerise; Stephen P. Wilkinson

*† ‡ Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7ϒ half-angle cone at 0ϒ angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a lowdisturbance supersonic flow is presented. Nomenclature


AIAA Journal | 2013

Roughness Induced Transition in a Supersonic Boundary Layer

Ponnampalam Balakumar; Michael A. Kegerise

Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.


42nd AIAA Aerospace Sciences Meeting and Exhibit | 2004

Real-Time Adaptive Control of Flow-Induced Cavity Tones (Invited)

Michael A. Kegerise; Randolph H. Cabell; Louis N. Cattafesta

An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.


AIAA Journal | 2014

Flow Disturbance Measurements in the National Transonic Facility

Rudolph A. King; Marlyn Y. Andino; LaTunia G. Pack Melton; Jenna L. Eppink; Michael A. Kegerise

Recent flow measurements have been acquired in the National Transonic Facility to assess the test-section unsteady flow environment. The primary purpose of the test is to determine the feasibility of the facility to conduct laminar-flow-control testing and boundary-layer transition-sensitive testing at flight-relevant operating conditions throughout the transonic Mach number range. The facility can operate in two modes, warm and cryogenic test conditions for testing full and semispan-scaled models. Data were acquired for Mach and unit Reynolds numbers ranging from 0.2≤M≤0.95 and 3.3×106<Re/m<220×106 collectively at air and cryogenic conditions. Measurements were made in the test section using a survey rake that was populated with 19 probes. Roll polar data at selected conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements...

Collaboration


Dive into the Michael A. Kegerise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Chou

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge