Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Moskowitz is active.

Publication


Featured researches published by Michael A. Moskowitz.


Trends in Neurosciences | 1999

Pathobiology of ischaemic stroke: an integrated view

Ulrich Dirnagl; Costantino Iadecola; Michael A. Moskowitz

Brain injury following transient or permanent focal cerebral ischaemia (stroke) develops from a complex series of pathophysiological events that evolve in time and space. In this article, the relevance of excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis to delayed mechanisms of damage within the peri-infarct zone or ischaemic penumbra are discussed. While focusing on potentially new avenues of treatment, the issue of why many clinical stroke trials have so far proved disappointing is addressed. This article provides a framework that can be used to generate testable hypotheses and treatment strategies that are linked to the appearance of specific pathophysiological events within the ischaemic brain.


Nature Reviews Neuroscience | 2003

MECHANISMS, CHALLENGES AND OPPORTUNITIES IN STROKE

Eng H. Lo; Turgay Dalkara; Michael A. Moskowitz

Over the past two decades, research has heavily emphasized basic mechanisms that irreversibly damage brain cells after stroke. Much attention has focused on what makes neurons die easily and what strategies render neurons resistant to ischaemic injury. In the past few years, clinical experience with clot-lysing drugs has confirmed expectations that early reperfusion improves clinical outcome. With recent research emphasizing ways to reduce tissue damage by both vascular and cell-based mechanisms, the spotlight is now shifting towards the study of how blood vessels and brain cells communicate with each other. This new research focus addresses an important need in stroke research, and provides challenges and opportunities that can be used to therapeutic advantage.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Mechanisms of migraine aura revealed by functional MRI in human visual cortex

Nouchine Hadjikhani; Margarita Sanchez del Rio; Ona Wu; Denis Schwartz; Dick Bakker; Bruce Fischl; Kenneth K. Kwong; F. Michael Cutrer; Bruce R. Rosen; Roger B. H. Tootell; A. Gregory Sorensen; Michael A. Moskowitz

Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex.


Nature Medicine | 2002

Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model

Hayrunnisa Bolay; Uwe Reuter; Andrew K. Dunn; Zhihong Huang; David A. Boas; Michael A. Moskowitz

Although the trigeminal nerve innervates the meninges and participates in the genesis of migraine headaches, triggering mechanisms remain controversial and poorly understood. Here we establish a link between migraine aura and headache by demonstrating that cortical spreading depression, implicated in migraine visual aura, activates trigeminovascular afferents and evokes a series of cortical meningeal and brainstem events consistent with the development of headache. Cortical spreading depression caused long-lasting blood-flow enhancement selectively within the middle meningeal artery dependent upon trigeminal and parasympathetic activation, and plasma protein leakage within the dura mater in part by a neurokinin-1-receptor mechanism. Our findings provide a neural mechanism by which extracerebral cephalic blood flow couples to brain events; this mechanism explains vasodilation during headache and links intense neurometabolic brain activity with the transmission of headache pain by the trigeminal nerve.


The Journal of Neuroscience | 2001

Effects of Matrix Metalloproteinase-9 Gene Knock-Out on the Proteolysis of Blood–Brain Barrier and White Matter Components after Cerebral Ischemia

Minoru Asahi; Xiaoying Wang; Tatsuro Mori; Toshihisa Sumii; Jae-Chang Jung; Michael A. Moskowitz; M. Elizabeth Fini; Eng H. Lo

Deleterious processes of extracellular proteolysis may contribute to the progression of tissue damage after acute brain injury. We recently showed that matrix metalloproteinase-9 (MMP-9) knock-out mice were protected against ischemic and traumatic brain injury. In this study, we examined the mechanisms involved by focusing on relevant MMP-9 substrates in blood–brain barrier, matrix, and white matter. MMP-9 knock-out and wild-type mice were subjected to transient focal ischemia. MMP-9 levels increased after ischemia in wild-type brain, with expression primarily present in vascular endothelium. Western blots showed that the blood–brain barrier-associated protein and MMP-9 substrate zonae occludens-1 was degraded after ischemia, but this was reduced in knock-out mice. There were no detectable changes in another blood–brain barrier-associated protein, occludin. Correspondingly, blood–brain barrier disruption assessed via Evans Blue leakage was significantly attenuated in MMP-9 knock-out mice compared with wild types. In white matter, ischemic degradation of the MMP-9 substrate myelin basic protein was significantly reduced in knock-out mice compared with wild types, whereas there was no degradation of other myelin proteins that are not MMP substrates (proteolipid protein and DM20). There were no detectable changes in the ubiquitous structural protein actin or the extracellular matrix protein laminin. Finally, 24 hr lesion volumes were significantly reduced in knock-out mice compared with wild types. These data demonstrate that the protective effects of MMP-9 gene knock-out after transient focal ischemia may be mediated by reduced proteolytic degradation of critical blood–brain barrier and white matter components.


Nature | 1997

Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2

Joseph V. Bonventre; Zihong Huang; Taheri Mr; Eileen O'Leary; En Li; Michael A. Moskowitz; Adam Sapirstein

Phospholipase A2 (PLA2) enzymes are critical regulators of prostaglandin and leukotriene synthesis and can directly modify the composition of cellular membranes,. PLA2 enzymes release fatty acids and lysophospholipids, including the precursor of platelet-activating factor, PAF, from phospholipids. Free fatty acids, eicosanoids, lysophospholipids and PAF are potent regulators of inflammation,,, reproduction and neurotoxicity,,. The physiological roles of the various forms of PLA2 are not well defined. The cytosolic form, cPLA2, preferentially releases arachidonic acid from phospholipids and is regulated by changes in intracellular calcium concentration,. We have now created ‘knockout’ (cPLA2−/−) mice that lack this enzyme, in order to evaluate its physiological importance. We find that cPLA2−/− mice develop normally, but that the females produce only small litters in which the pups are usually dead. Stimulated peritoneal macrophages from cPLA2−/− animals did not produce prostaglandin E2 or leukotriene B4 or C4. After transient middle cerebral artery occlusion, cPLA2−/− mice had smaller infarcts and developed less brain oedema and fewer neurological deficits. Thus cPLA2 is important for macrophage production of inflammatory mediators, fertility, and in the pathophysiology of neuronal death after transient focal cerebral ischaemia.


Nature Reviews Neuroscience | 2003

Neurological diseases: Mechanisms, challenges and opportunities in stroke

Eng H. Lo; Turgay Dalkara; Michael A. Moskowitz

Over the past two decades, research has heavily emphasized basic mechanisms that irreversibly damage brain cells after stroke. Much attention has focused on what makes neurons die easily and what strategies render neurons resistant to ischaemic injury. In the past few years, clinical experience with clot-lysing drugs has confirmed expectations that early reperfusion improves clinical outcome. With recent research emphasizing ways to reduce tissue damage by both vascular and cell-based mechanisms, the spotlight is now shifting towards the study of how blood vessels and brain cells communicate with each other. This new research focus addresses an important need in stroke research, and provides challenges and opportunities that can be used to therapeutic advantage.


Journal of Cerebral Blood Flow and Metabolism | 1996

Enlarged Infarcts in Endothelial Nitric Oxide Synthase Knockout Mice are Attenuated by Nitro-L-Arginine:

Zhihong Huang; Paul L. Huang; Jianya Ma; Wei Meng; Cenk Ayata; Mark C. Fishman; Michael A. Moskowitz

Infarct size and vascular hemodynamics were measured 24 h after middle cerebral artery (MCA) occlusion in mice genetically deficient in the endothelial nitric oxide synthase (eNOS) isoform. eNOS mutant mice developed larger infarcts (21%) than the wild-type strain when assessed 24 h after intraluminal filament occlusion. Moreover, regional CBF values recorded in the MCA territory by laser-Doppler flowmetry were more severely reduced after occlusion and were disproportionately reduced during controlled hemorrhagic hypotension in autoregulation experiments. Unlike the situation in wild-type mice, nitro-L-arginine superfusion (1 mM) dilated pial arterioles of eNOS knockout mice in a closed cranial window preparation. As noted previously, eNOS mutant mice were hypertensive. However, infarct size remained increased despite lowering blood pressure to normotensive levels by hydralazine treatment. Systemic administration of nitro-L-arginine decreased infarct size in eNOS mutant mice (24%) but not in the wild-type strain. This finding complements published data showing that nitro-L-arginine increases infarct size in knockout mice expressing the eNOS but not the neuronal NOS isoform (i.e., neuronal NOS knockout mice). We conclude that NO production within endothelium may protect brain tissue, perhaps by hemodynamic mechanisms, whereas neuronal NO overproduction may lead to neurotoxicity.


Journal of Cerebral Blood Flow and Metabolism | 1994

Nitric Oxide Synthase Inhibition and Cerebrovascular Regulation

Costantino Iadecola; Dale A. Pelligrino; Michael A. Moskowitz; N. A. Lassen

There is increasing evidence that nitric oxide (NO) is an important molecular messenger involved in a wide variety of biological processes. Recent data suggest that NO is also involved in the regulation of the cerebral circulation. Thus, NO participants in the maintenance of resting cerebrovascular tone and may play an important role in selected vasodilator responses of the cerebral circulation. Furthermore, evidence has been presented suggesting that NO participates in the mechanisms of cerebral ischemic damage. Despite the widespread attention that NO has captured in recent years and the large number of studies that have been published on the subject, there is considerable controversy regarding the role of this agent in cerebrovascular regulation and in ischemic damage. In this paper the results of investigations on NO and the cerebral circulation are reviewed and the evidence for and against a role of NO is critically examined.


Journal of Cerebral Blood Flow and Metabolism | 1997

Ischemic Brain Injury Is Mediated by the Activation of Poly(ADP-Ribose)Polymerase

Matthias Endres; Zhao-Qi Wang; Shobu Namura; Christian Waeber; Michael A. Moskowitz

Poly(ADP-ribose)polymerase (PARP, EC 2.4.2.30), an abundant nuclear protein activated by DNA nicks, mediates cell death in vitro by nicotinamide adenine dinucleotide (NAD) depletion after exposure to nitric oxide. The authors examined whether genetic deletion of PARP (PARP null mice) or its pharmacologic inhibition by 3-aminobenzamide (3-AB) attenuates tissue injury after transient cerebral ischemia. Twenty-two hours after reperfusion following 2 hours of filamentous middle cerebral artery occlusion, ischemic injury was decreased in PARP−/− and PARP+/− mice compared with PARP+/+ litter mates, and also was attenuated in 129/SV wild-type mice after 3-AB treatment compared with controls. Infarct sparing was accompanied by functional recovery in PARP−/− and 3-AB–treated mice. Increased poly(ADP-ribose) immunostaining observed in ischemic cell nuclei 5 minutes after reperfusion was reduced by 3-AB treatment. Levels of NAD—the substrate of PARP—were reduced 2 hours after reperfusion and were 35% of contralateral levels at 24 hours. The decreases were attenuated in PARP−/− mice and in 3-AB–treated animals. Poly(ADP-ribose)polymerase cleavage by caspase-3 (CPP-32) has been proposed as an important step in apoptotic cell death. Markers of apoptosis, such as oligonucleosomal DNA damage, total DNA fragmentation, and the density of terminal deoxynucleotidyl transferase dUTP nick-end–labelled (TUNEL +) cells, however, did not differ in ischemic brain tissue of PARP−/− mice or in 3-AB–treated animals versus controls, although there were differences in the number of TUNEL-stained cells reflecting the decrease in infarct size. Thus, ischemic brain injury activates PARP and contributes to cell death most likely by NAD depletion and energy failure, although the authors have not excluded a role for PARP in apoptotic cell death at earlier or later stages in ischemic cell death. Inhibitors of PARP activation could provide a potential therapy in acute stroke.

Collaboration


Dive into the Michael A. Moskowitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge