Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul L. Huang is active.

Publication


Featured researches published by Paul L. Huang.


Cell | 1993

Targeted disruption of the neuronal nitric oxide synthase gene

Paul L. Huang; Ted M. Dawson; David S. Bredt; Solomon H. Snyder; Mark C. Fishman

By homologous recombination, we have generated mice that lack the neuronal nitric oxide synthase (NOS) gene. Neuronal NOS expression and NADPH-diaphorase (NDP) staining are absent in the mutant mice. Very low level residual catalytic activity suggests that other enzymes in the brain may generate nitric oxide. The neurons normally expressing NOS appear intact, and the mutant NOS mice are viable, fertile, and without evident histopathological abnormalities in the central nervous system. The most evident effect of disrupting the neuronal NOS gene is the development of grossly enlarged stomachs, with hypertrophy of the pyloric sphincter and the circular muscle layer. This phenotype resembles the human disorder infantile pyloric stenosis, in which gastric outlet obstruction is associated with the lack of NDP neurons in the pylorus.


Journal of Clinical Investigation | 1998

Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.

Toyoaki Murohara; Takayuki Asahara; Marcy Silver; C Bauters; H Masuda; C Kalka; Marianne Kearney; Dongfen Chen; J F Symes; Mark C. Fishman; Paul L. Huang; Jeffrey M. Isner

We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability

Dai Fukumura; Takeshi Gohongi; Ananth Kadambi; Yotaro Izumi; Jennifer Ang; Chae-Ok Yun; Donald G. Buerk; Paul L. Huang; Rakesh K. Jain

Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N6-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) ≥ WT with l-NIL or iNOS−/− > eNOS−/− ≥ eNOS−/− with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS−/− mice but not in eNOS−/− mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.


Journal of Cerebral Blood Flow and Metabolism | 1996

Enlarged Infarcts in Endothelial Nitric Oxide Synthase Knockout Mice are Attenuated by Nitro-L-Arginine:

Zhihong Huang; Paul L. Huang; Jianya Ma; Wei Meng; Cenk Ayata; Mark C. Fishman; Michael A. Moskowitz

Infarct size and vascular hemodynamics were measured 24 h after middle cerebral artery (MCA) occlusion in mice genetically deficient in the endothelial nitric oxide synthase (eNOS) isoform. eNOS mutant mice developed larger infarcts (21%) than the wild-type strain when assessed 24 h after intraluminal filament occlusion. Moreover, regional CBF values recorded in the MCA territory by laser-Doppler flowmetry were more severely reduced after occlusion and were disproportionately reduced during controlled hemorrhagic hypotension in autoregulation experiments. Unlike the situation in wild-type mice, nitro-L-arginine superfusion (1 mM) dilated pial arterioles of eNOS knockout mice in a closed cranial window preparation. As noted previously, eNOS mutant mice were hypertensive. However, infarct size remained increased despite lowering blood pressure to normotensive levels by hydralazine treatment. Systemic administration of nitro-L-arginine decreased infarct size in eNOS mutant mice (24%) but not in the wild-type strain. This finding complements published data showing that nitro-L-arginine increases infarct size in knockout mice expressing the eNOS but not the neuronal NOS isoform (i.e., neuronal NOS knockout mice). We conclude that NO production within endothelium may protect brain tissue, perhaps by hemodynamic mechanisms, whereas neuronal NO overproduction may lead to neurotoxicity.


Nature | 2009

Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages

Lei Bu; Xin Jiang; Silvia Martin-Puig; Leslie Caron; Shenjun Zhu; Ying Shao; Drucilla J. Roberts; Paul L. Huang; Ibrahim J. Domian; Kenneth R. Chien

The generation and expansion of diverse cardiovascular cell lineages is a critical step during human cardiogenesis, with major implications for congenital heart disease. Unravelling the mechanisms for the diversification of human heart cell lineages has been hampered by the lack of genetic tools to purify early cardiac progenitors and define their developmental potential. Recent studies in the mouse embryo have identified a multipotent cardiac progenitor that contributes to all of the major cell types in the murine heart. In contrast to murine development, human cardiogenesis has a much longer onset of heart cell lineage diversification and expansion, suggesting divergent pathways. Here we identify a diverse set of human fetal ISL1+ cardiovascular progenitors that give rise to the cardiomyocyte, smooth muscle and endothelial cell lineages. Using two independent transgenic and gene-targeting approaches in human embryonic stem cell lines, we show that purified ISL1+ primordial progenitors are capable of self-renewal and expansion before differentiation into the three major cell types in the heart. These results lay the foundation for the generation of human model systems for cardiovascular disease and novel approaches for human regenerative cardiovascular medicine.


Cell | 1996

Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase.

Hyeon Son; Robert D. Hawkins; Kelsey C. Martin; Michael Kiebler; Paul L. Huang; Mark C. Fishman; Eric R. Kandel

Nitric oxide (NO) has been implicated in hippocampal long-term potentiation (LTP), but LTP is normal in mice with a targeted mutation in the neuronal form of NO synthase (nNOS-). LTP was also normal in mice with a targeted mutation in endothelial NOS (eNOS-), but LTP in stratum radiatum of CA1 was significantly reduced in doubly mutant mice (nNOS-/eNOS-). By contrast, LTP in stratum oriens was normal in the doubly mutant mice. These results provide the first genetic evidence that NOS is involved in LTP in stratum radiatum and suggest that the neuronal and endothelial forms can compensate for each other in mice with a single mutation. They further suggest that there is also a NOS-independent component of LTP in stratum radiatum and that LTP in stratum oriens is largely NOS independent.


Disease Models & Mechanisms | 2009

A comprehensive definition for metabolic syndrome

Paul L. Huang

The metabolic syndrome refers to the co-occurrence of several known cardiovascular risk factors, including insulin resistance, obesity, atherogenic dyslipidemia and hypertension. These conditions are interrelated and share underlying mediators, mechanisms and pathways. There has been recent controversy about its definition and its utility. In this article, I review the current definitions for the metabolic syndrome and why the concept is important. It identifies a subgroup of patients with shared pathophysiology who are at high risk of developing cardiovascular disease and type 2 diabetes. By considering the central features of the metabolic syndrome and how they are related, we may better understand the underlying pathophysiology and disease pathogenesis. A comprehensive definition for the metabolic syndrome and its key features would facilitate research into its causes and hopefully lead to new insights into pharmacologic and lifestyle treatment approaches.


Journal of Cerebral Blood Flow and Metabolism | 1996

Reduced Brain Edema and Infarction Volume in Mice Lacking the Neuronal Isoform of Nitric Oxide Synthase after Transient MCA Occlusion

Hideaki Hara; Paul L. Huang; Nariman Panahian; Mark C. Fishman; Michael A. Moskowitz

Infarct volume and edema were assessed after transient focal ischemia in mice lacking neuronal nitric oxide synthase (NOS) gene expression. With use of an 8–0 coated monofilament, the middle cerebral artery (MCA) of mutant (n = 32) and wild-type mice [SV-129 (n = 31), C57Black/6 (n = 18)] were occluded for 3 h and reperfused for up to 24 h. Regional CBF (rCBF), neurological deficits, water content, and infarct volume were examined in all three strains. rCBF, blood pressure, and heart rate did not differ between groups when measured for 1 h after reperfusion. Neurological deficits were less severe in mutant mice after MCA occlusion. Brain water content at 3 h after reperfusion and infarct volume at 24 h after reperfusion were greater in wild-type mice. These data indicate that genetic deletion of neuronal NOS confers resistance to focal ischemic injury in a reperfusion model. The findings agree with previous studies showing that tissue injury is less extensive after both permanent MCA occlusion and global ischemia in mice lacking neuronal NOS gene expression. Hence, NO may play a pivotal role in the pathogenesis of ischemic brain damage.


Journal of Clinical Investigation | 1998

Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice.

Masao Moroi; Lin Zhang; Tsunehiro Yasuda; Renu Virmani; Herman K. Gold; Mark C. Fishman; Paul L. Huang

To begin to dissect atherogenesis as a complex genetic disorder affected by genetic makeup and environment, we have (a) generated a reproducible mouse model of neointimal growth; (b) evaluated the effect of disruption of a single gene, endothelial nitric oxide synthase, believed to be central to intimal growth, and (c) examined the modifying effects of gender and pregnancy upon the vascular response. Cuff placement around the femoral artery causes reproducible intimal growth. We assessed the response to injury by quantitative morphometry, measuring the intimal to medial (I/M) volume ratio. In wild-type mice, cuff placement causes pronounced intimal proliferation without affecting the media, resulting in I/M ratios of 31% (SV129 males) and 27% (C57BL/6 males). eNOS mutant male mice have a much greater degree of intimal growth (I/M ratio of 70%). Female mice show less intimal response than do males, although eNOS mutant female mice still have more response than do wild-type females. Most dramatic, however, is the effect of pregnancy, which essentially abolishes the intimal response to injury, even overriding the effect of eNOS mutation. We conclude that eNOS deficiency is a genetic predisposition to intimal proliferation that is enhanced by male gender, and that may be overridden by pregnancy.


Circulation | 2002

In Vivo Imaging of Proteolytic Activity in Atherosclerosis

Jiqiu Chen; Ching-Hsuan Tung; Umar Mahmood; Vasilis Ntziachristos; Robert Gyurko; Mark C. Fishman; Paul L. Huang; Ralph Weissleder

Background—Atherosclerotic plaque rupture, the most important cause of acute cardiovascular incidents, has been strongly associated with vascular inflammation. On the basis of the hypothesis that the inflammatory response and proteolysis lead to plaque rupture, we have examined the role of cathepsin B as a model proteolytic enzyme. Methods and Results—Using western-type diet–fed apoE and apoE/endothelial NO synthase double knockout mice as models of atherosclerosis, we show (1) that cathepsin B is upregulated in atherosclerotic lesions characterized by high degrees of inflammation compared with normal aorta or silent lesions,(2) that intravenously injectable novel cathepsin B imaging beacons are highly activated within active atherosclerotic lesions and colocalize with cathepsin B immunoreactivity, and(3) that cathepsin B activity in atherosclerotic lesions can be imaged in whole animals by using a novel near-infrared tomographic imaging system. Conclusions—These studies indicate that cathepsin B, and potentially other proteases, may serve as a biomarker for vulnerable plaques when probed with beacons. The tomographic in vivo imaging method as well as catheter-based optical sensing methods could be readily adapted to screening and potentially to the molecular profiling of a number of proteases in vulnerable plaque in vivo.

Collaboration


Dive into the Paul L. Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsiang-Fu Kung

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge