Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Vance is active.

Publication


Featured researches published by Michael A. Vance.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol

Julia S. Woertink; Pieter J. Smeets; Marijke H. Groothaert; Michael A. Vance; Bert F. Sels; Robert A. Schoonheydt; Edward I. Solomon

Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm−1. In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. 18O2 labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu2O]2+ core, which is directed into the zeolite channel, upon approach of CH4. This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(μ-oxo)dicupric core is highly activated for H atom abstraction from CH4. The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction.


Journal of the American Chemical Society | 2009

Toluene and Ethylbenzene Aliphatic C-H Bond Oxidations Initiated by a Dicopper(II)-μ-1,2-Peroxo Complex

Heather R. Lucas; Lei Li; Amy A. Narducci Sarjeant; Michael A. Vance; Edward I. Solomon; Kenneth D. Karlin

With an anisole-containing polypyridylamine potential tetradentate ligand (O)L, a mu-1,2-peroxo-dicopper(II) complex [{(O)LCu(II)}(2)(O(2)(2-))](2+) forms from the reaction of the mononuclear compound [Cu(I)((O)L)(MeCN)]B(C(6)F(5))(4) ((O)LCu(I)) with O(2) in noncoordinating solvents at -80 degrees C. Thermal decay of this peroxo complex in the presence of toluene or ethylbenzene leads to rarely seen C-H activation chemistry; benzaldehyde and acetophenone/1-phenylethanol mixtures, respectively, are formed. Experiments with (18)O(2) confirm that the oxygen source in the products is molecular O(2) and deuterium labeling experiments indicate k(H)/k(D) = 7.5 +/- 1 for the toluene oxygenation. The O(2)-reaction of [Cu(I)((Bz)L)(CH(3)CN)](+) ((Bz)LCu(I)) leads to a dicopper(III)-bis-mu-oxo species [{(Bz)LCu(III)}(2)(mu-O(2-))(2)](2+) at -80 degrees C, and from such solutions, very similar toluene oxygenation chemistry occurs. Ligand (Bz)L is a tridentate chelate, possessing the same moiety found in (O)L, but without the anisole O-atom donor. In these contexts, the nature of the oxidant species in or derived from [{(O)LCu(II)}(2)(O(2)(2-))](2+) is discussed and likely mechanisms of reaction initiated by toluene H-atom abstraction chemistry are detailed. To confirm the structural formulations of the dioxygen-adducts, UV-vis and resonance Raman spectroscopic studies have been carried out and these results are reported and compared to previously described systems including [{Cu(II)((Py)L)}(2)(O(2))](2+) ((Py)L = TMPA = tris(2-methylpyridyl)amine). Using (L)Cu(I), CO-binding properties (i.e., nu(C-O) values) along with electrochemical property comparisons, the relative donor abilities of (O)L, (Bz)L, and (Py)L are assessed.


Inorganic Chemistry | 2009

Copper(I)/O2 Chemistry with Imidazole Containing Tripodal Tetradentate Ligands Leading to μ-1,2-Peroxo−Dicopper(II) Species

Yunho Lee; Ga Young Park; Heather R. Lucas; Peter L. Vajda; Kaliappan Kamaraj; Michael A. Vance; Ashley E. Milligan; Julia S. Woertink; Maxime A. Siegler; Amy A. Narducci Sarjeant; Lev N. Zakharov; Arnold L. Rheingold; Edward I. Solomon; Kenneth D. Karlin

Cuprous and cupric complexes with the new imidazolyl containing tripodal tetradentate ligands {L(MIm), (1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine, and L(EIm), 2-(1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)ethanamine}, have been investigated to probe differences in their chemistry, especially in copper(I)-dioxygen chemistry, compared to that already known for the pyridyl analogue TMPA, tris(2-pyridyl)methyl)amine. Infrared (IR) stretching frequencies obtained from carbon monoxide adducts of [(L(MIm))Cu(I)](+) (1a) and [(L(EIm))Cu(I)](+) (2a) show that the imidazolyl donor is stronger than its pyridyl analogue. Electrochemical data suggest differences in the binding constant of Cu(II) to L(EIm) compared to TMPA and L(MIm), reflecting geometric changes. Oxygenation of [(L(MIm))Cu(I)](+) (1a) in 2-methyltetrahydrofuran (MeTHF) solvent at -128 degrees C leads to an intensely purple colored species with a UV-vis spectrum characteristic of an end-on bound peroxodicopper(II) complex [{(L(MIm))Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) (1b(P)) {lambda(max) = 528 nm}, very similar to the previously well characterized complex [{(TMPA)Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) {lambda(max) = 520 nm (epsilon = 12 000 M(-1) cm(-1)), in MeTHF; resonance Raman (rR) spectroscopy: nu(O-O) = 832 (Delta((18)O(2)) = -44) cm(-1)}. In the low-temperature oxygenation of 2a, benchtop (-128 degrees C) and stopped-flow (-90 degrees C) experiments reveal the formation of an initial superoxo-Cu(II) species [(L(EIm))Cu(II)(O(2)(*-))](+) (2b(S)), lambda(max) = 431 nm in THF) . This converts to the low-temperature stable peroxo complex [{(L(EIm))Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) (2b(P)) {rR spectroscopy: nu(O-O) = 822 (Delta((18)O(2)) = -46) cm(-1)}. Complex 2b(P) possess distinctly reduced Cu-O and O-O stretching frequencies and a red-shifted UV-vis feature {to lambda(max) = 535 nm (epsilon = 11 000 M(-1) cm(-1))} compared to the TMPA analogue due to a distortion from trigonal bipyramidal (TBP) to a square pyramidal ligand field. This distortion is supported by the structural characterization of related ligand-copper(II) complexes: A stable tetramer cluster complex [(mu(2)-L(EIm-))(4)(Cu(II))(4)](4+), obtained from thermal decomposition of 2b(P) (with formation of H(2)O(2)), also exhibits a distorted square pyramidal Cu(II) ion geometry as does the copper(II) complex [(L(EIm))Cu(II)(CH(3)CN)](2+) (2c), characterized by X-ray crystallography and solution electron paramagnetic resonance (EPR) spectroscopy.


Journal of the American Chemical Society | 2008

Spectroscopic and Electronic Structure Studies of Phenolate Cu(II) Complexes: Phenolate Ring Orientation and Activation Related to Cofactor Biogenesis

Somdatta Ghosh; Jordi Cirera; Michael A. Vance; Tetsuya Ono; Kiyoshi Fujisawa; Edward I. Solomon

A combination of spectroscopies and DFT calculations have been used to define the electronic structures of two crystallographically defined Cu(II)-phenolate complexes. These complexes differ in the orientation of the phenolate ring which results in different bonding interactions of the phenolate donor orbitals with the Cu(II), which are reflected in the very different spectroscopic properties of the two complexes. These differences in electronic structures lead to significant differences in DFT calculated reactivities with oxygen. These calculations suggest that oxygen activation via a Cu(I) phenoxyl ligand-to-metal charge transfer complex is highly endergonic (>50 kcal/mol), hence an unlikely pathway. Rather, the two-electron oxidation of the phenolate forming a bridging Cu(II) peroxoquinone complex is more favorable (11.3 kcal/mol). The role of the oxidized metal in mediating this two-electron oxidation of the coordinated phenolate and its relevance to the biogenesis of the covalently bound topa quinone in amine oxidase are discussed.


Inorganic Chemistry | 2010

Sulfur Donor Atom Effects on Copper(I)/O2 Chemistry with Thioanisole Containing Tetradentate N3S Ligand Leading to μ-1,2-Peroxo-Dicopper(II) Species

Yunho Lee; Dong-Heon Lee; Ga Young Park; Heather R. Lucas; Amy A. Narducci Sarjeant; Matthew T. Kieber-Emmons; Michael A. Vance; Ashley E. Milligan; Edward I. Solomon; Kenneth D. Karlin

To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(L(ASM))Cu(I)](+) (1a) and [(L(EOE))Cu(I)](+) (3a), were studied as were the related compound [(L(ESE))Cu(I)](+) (2a, L(ESE) = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether, or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH(3)CN and N,N-dimethylformamide (DMF) show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ∼200 mV more positive than 2a). The structures of [(L(ASM))Cu(II)(CH(3)OH)](2+) (1c) and [(L(ESE))Cu(II)(CH(3)OH)](2+) (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue intermediate [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) with absorption features at 442 (1,500 M(-1) cm(-1)), 530 (8,600 M(-1) cm(-1)), and 605 nm (10,400 M(-1) cm(-1)); these values compare well to the ligand-to-metal charge-transfer (LMCT) transitions previously reported for [{(L(ESE))Cu(II)}(2)(O(2)(2-))](2+) (2b(P)). Resonance Raman data for [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) support the formation of μ-1,2-peroxo species ν(O-O) = 828 cm(-1)(Δ((18)O(2)) = 48), ν(sym)(Cu-O) = 547 cm(-1) (Δ((18)O(2)) = 23), and ν(asym)(Cu-O) = 497 cm(-1) (Δ((18)O(2)) = 22) and suggest the L(ASM) ligand is a poorer electron donor to copper than is L(ESE). In contrast, the oxygenation of [(L(EOE))Cu(I)](+) (3a), possessing an ether donor as an analogue of the thioether in L(ESE), led to the formation of a bis(μ-oxo) species [{(L(EOE))Cu(III)}(2)(O(2-))(2)](2+) (3b(O); 380 nm, ε ∼ 10,000 M(-1) cm(-1)). This result provides further support for the sulfur influence in 1b(P) and 2b(P), in particular coordination of the sulfur to the Cu. Thermal decomposition of 1b(P) is accompanied by ligand sulfoxidation. The structure of [{(L(EOE))Cu(II)(Cl)}(2)](+) (3c) generated from the reductive dehalogenation of organic chlorides suggests that the ether moiety is weakly bound to the cupric ion. A detailed discussion of the spectroscopic and structural characteristics of 1b(P), 2b(P), and 3b(O) is presented.


Science | 2005

Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism

Liviu M. Mirica; Michael A. Vance; Deanne Jackson Rudd; Britt Hedman; Keith O. Hodgson; Edward I. Solomon; T. Daniel P. Stack


Journal of the American Chemical Society | 2007

A 1:1 Copper−Dioxygen Adduct is an End-on Bound Superoxo Copper(II) Complex which Undergoes Oxygenation Reactions with Phenols

Debabrata Maiti; H. Christopher Fry; Julia S. Woertink; Michael A. Vance; and Edward I. Solomon; Kenneth D. Karlin


Journal of the American Chemical Society | 2009

Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization.

Bryan T. Op’t Holt; Michael A. Vance; Liviu M. Mirica; David E. Heppner; T. Daniel P. Stack; Edward I. Solomon


Journal of the American Chemical Society | 2006

mu-eta**(-2) eta**(2)-Peroxodicopper(II) complex with a secondary dimaine ligand: A Functional model of Tyrosinase

Liviu M. Mirica; Deanne Jackson Rudd; Michael A. Vance; Edward I. Solomon; Keith O. Hodgson; Britt Hedman; T. Daniel P. Stack


Journal of the American Chemical Society | 2002

A Stabilized μ-η2:η2 Peroxodicopper(II) Complex with a Secondary Diamine Ligand and Its Tyrosinase-like Reactivity

Liviu M. Mirica; Michael A. Vance; Deanne Jackson Rudd; Britt Hedman; Keith O. Hodgson; Edward I. Solomon; T. D. P. Stack

Collaboration


Dive into the Michael A. Vance's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britt Hedman

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liviu M. Mirica

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge