Michael B. Otteneder
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael B. Otteneder.
mAbs | 2012
Yanan Zheng; Devin Tesar; Lisa Benincosa; Herbert Birnböck; C. Andrew Boswell; Daniela Bumbaca; Kyra J. Cowan; Dimitry M. Danilenko; Ann L. Daugherty; Paul J. Fielder; Hans Peter Grimm; Amita Joshi; Nicole Justies; Gerry Kolaitis; Nicholas Lewin-Koh; Jing Li; Sami McVay; Jennifer O'Mahony; Michael B. Otteneder; Michael Pantze; Wendy S. Putnam; Zhihua J. Qiu; Jane Ruppel; Thomas Singer; Oliver Boris Stauch; Frank-Peter Theil; Jennifer Visich; Jihong Yang; Yong Ying; Leslie A. Khawli
Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.
Bioorganic & Medicinal Chemistry Letters | 2010
Lillli Anselm; David W. Banner; Jörg Benz; Katrin Groebke Zbinden; Jacques Himber; Hans Hilpert; Walter Huber; Bernd Kuhn; Jean-Luc Mary; Michael B. Otteneder; Narendra Panday; Fabienne Ricklin; Martin Stahl; Stefan Thomi; Wolfgang Haap
A series of (3R,4R)-pyrrolidine-3,4-dicarboxylic acid amides was investigated with respect to their factor Xa inhibitory activity, selectivity, pharmacokinetic properties, and ex vivo antithrombotic activity. The clinical candidate from this series, R1663, exhibits excellent selectivity against a panel of serine proteases and good pharmacokinetic properties in rats and monkeys. A Phase I clinical study with R1663 has been finalized.
Antimicrobial Agents and Chemotherapy | 2009
Gerhard Hoffmann; Christoph Funk; Stephen Fowler; Michael B. Otteneder; Alexander Breidenbach; Craig R. Rayner; Tom Chu; Eric Prinssen
ABSTRACT Oseltamivir, a potent and selective inhibitor of influenza A and B virus neuraminidases, is a prodrug that is systemically converted into the active metabolite oseltamivir carboxylate. In light of reported neuropsychiatric events in influenza patients, including some taking oseltamivir, and as part of a full assessment to determine whether oseltamivir could contribute to, or exacerbate, such events, we undertook a series of nonclinical studies. In particular, we investigated (i) the distribution of oseltamivir and oseltamivir carboxylate in the central nervous system of rats after single intravenous doses of oseltamivir and oseltamivir carboxylate and oral doses of oseltamivir, (ii) the active transport of oseltamivir and oseltamivir carboxylate in vitro by transporters located in the blood-brain barrier, and (iii) the extent of local conversion of oseltamivir to oseltamivir carboxylate in brain fractions. In all experiments, results showed that the extent of partitioning of oseltamivir and especially oseltamivir carboxylate to the central nervous system was low. Brain-to-plasma exposure ratios were approximately 0.2 for oseltamivir and 0.01 for oseltamivir carboxylate. Apart from oseltamivir being a good substrate for the P-glycoprotein transporter, no other active transport processes were observed. The conversion of the prodrug to the active metabolite was slow and limited in human and rat brain S9 fractions. Overall, these studies indicate that the potential for oseltamivir and oseltamivir carboxylate to reach the central nervous system in high quantities is low and, together with other analyses and studies, that their involvement in neuropsychiatric events in influenza patients is unlikely.
Bioorganic & Medicinal Chemistry Letters | 2010
Jens-Uwe Peters; Holger Kühne; Henrietta Dehmlow; Uwe Grether; Dominik Hainzl; Cornelia Hertel; Nicole A. Kratochwil; Michael B. Otteneder; Robert Narquizian; Constantinos G. Panousis; Fabienne Ricklin; Stephan Röver
Pyrido pyrimidinones are selective agonists of the human high affinity niacin receptor GPR109A (HM74A). They show no activity on the highly homologous low affinity receptor GPR109B (HM74). Starting from a high throughput screening hit the in vitro activity of the pyrido pyrimidinones was significantly improved providing lead compounds suitable for further optimization.
Drug Metabolism and Disposition | 2012
Agnès Poirier; Sara Belli; Christoph Funk; Michael B. Otteneder; Renée Portmann; Katja Heinig; Eric Prinssen; Stanley E. Lazic; Craig R. Rayner; Gerhard Hoffmann; Thomas Singer; David E. Smith; Franz Schuler
It was reported that oseltamivir (Tamiflu) absorption was mediated by human peptide transporter (hPEPT) 1. Understanding the exact mechanism(s) of absorption is important in the context of drug-drug and diet-drug interactions. Hence, we investigated the mechanism governing the intestinal absorption of oseltamivir and its active metabolite (oseltamivir carboxylate) in wild-type [Chinese hamster ovary (CHO)-K1] and hPEPT1-transfected cells (CHO-PEPT1), in pharmacokinetic studies in juvenile and adult rats, and in healthy volunteers. In vitro cell culture studies showed that the intracellular accumulation of oseltamivir and its carboxylate into CHO-PEPT1 and CHO-K1 was always similar under a variety of experimental conditions, demonstrating that these compounds are not substrates of hPEPT1. Furthermore, neither oseltamivir nor its active metabolite was capable of inhibiting Gly-Sar uptake in CHO-PEPT1 cells. In vivo pharmacokinetic studies in juvenile and adult rats showed that the disposition of oseltamivir and oseltamivir carboxylate, after oral administration of oseltamivir, was sensitive to the feed status but insensitive to the presence of milk and Gly-Sar. Moreover, oseltamivir and oseltamivir carboxylate exhibited significantly higher exposure in rats under fasted conditions than under fed conditions. In humans, oral dosing after a high-fat meal resulted in a statistically significant but moderate lower exposure than after an overnight fasting. This change has no clinical implications. Taken together, the results do not implicate either rat Pept1 or hPEPT1 in the oral absorption of oseltamivir.
The Journal of Physiology | 2017
Miro J. Eigenmann; Tine V. Karlsen; Ben-Fillippo Krippendorff; Olav Tenstad; Ludivine Fronton; Michael B. Otteneder; Helge Wiig
For therapeutic antibodies, total tissue concentrations are frequently reported as a lump sum measure of the antibody in residual plasma, interstitial fluid and cells. In terms of correlating antibody exposure to a therapeutic effect, however, interstitial pharmacokinetics might be more relevant. In the present study, we collected total tissue and interstitial antibody biodistribution data in mice and assessed the composition of tissue samples aiming to correct total tissue measurements for plasma and cellular content. All data and parameters were integrated into a refined physiologically‐based pharmacokinetic model for monoclonal antibodies to enable the tissue‐specific description of antibody pharmacokinetics in the interstitial space. We found that antibody interstitial concentrations are highly tissue‐specific and dependent on the underlying capillary structure but, in several tissues, they reach relatively high interstitial concentrations, contradicting the still‐prevailing view that both the distribution to tissues and the interstitial concentrations for antibodies are generally low.
mAbs | 2017
Miro J. Eigenmann; Ludivine Fronton; Hans Peter Grimm; Michael B. Otteneder; Ben-Fillippo Krippendorff
ABSTRACT Monoclonal antibodies are an important therapeutic entity, and knowledge of antibody pharmacokinetics has steadily increased over the years. Despite this effort, little is known about the extent of IgG antibody degradation in different tissues of the body. While studies have been published identifying sites of degradation with the use of residualizing and non-residualizing radiolabels, quantitative tissue clearances have not yet been derived. Here, we show that in physiologically-based pharmacokinetic (PBPK) models we can combine mouse data of Indium-111 and Iodine-125 labeled antibodies with prior physiologic knowledge to determine tissue-specific intrinsic clearances. Unspecific total tissue clearance (mL/day) in the mouse was estimated to be: liver = 4.75; brain = 0.02; gut = 0.40; heart = 0.07; kidney = 0.97; lung = 0.20; muscle = 3.02; skin = 3.89; spleen = 0.45; rest of body = 2.16. The highest catabolic activity (per g tissue) was in spleen for an FcRn wild-type antibody, but shifts to the liver for an antibody with reduced FcRn affinity. In the model developed, this shift can be explained by the liver having a greater FcRn-mediated protection capacity than the spleen. The quantification of tissue intrinsic clearances and FcRn salvage capacity increases our understanding of quantitative processes that drive the therapeutic responses of antibodies. This knowledge is critical, for instance to estimate the non-specific cellular uptake and degradation of antibodies used for targeted delivery of payloads.
Aaps Journal | 2017
David J. Wilkinson; Rosalind L. Southall; Mingguang Li; Lisa M. Wright; Lindsay J. Corfield; Thomas A. Heeley; Benjamin Bratby; Ranbir Mannu; Sarah L. Johnson; Victoria Shaw; Holly L. Friett; Louise A. Blakeburn; John S. Kendrick; Michael B. Otteneder
The importance of aldehyde oxidase (AOX) is becoming increasingly recognized in the prediction of human pharmacokinetic parameters from animal data. The objectives of these studies were to ascertain whether an in vitro–in vivo correlation existed in the clearance and metabolic pathways of AOX substrates and to establish whether the minipig represented an appropriate non-rodent model for man in the pre-clinical development of drugs metabolized by AOX. Using the AOX substrates carbazeran, 6-deoxypenciclovir and zaleplon, clearance was estimated from in vitro depletion experiments with minipig and human liver cytosol and microsomes and scaled before comparison with data generated in parallel in vivo studies in minipigs. In vitro and in vivo metabolic pathways were characterized by LC–MS/MS. Scaling of in vitro metabolism data to predict in vivo clearance underestimated in vivo values, although the rank order of clearance for the three compounds was preserved. Prediction of human in vivo clearance from scaled minipig in vivo data produced results which correlated well with published clinical values. Overall, this study is the first to compare minipig in vitro metabolism data with in vivo pharmacokinetic data for compounds metabolized by AOX and provides a scientific rationale for the selection of this species as a model for humans in the development of drugs which are substrates of AOX.
PLOS ONE | 2018
Nicole A. Kratochwil; Stephen R. Dueker; Dieter Muri; Claudia Senn; Hyejin Yoon; Byung-Yong Yu; Gwan-Ho Lee; Feng Dong; Michael B. Otteneder
New therapeutic biological entities such as bispecific antibodies targeting tissue or specific cell populations form an increasingly important part of the drug development portfolio. However, these biopharmaceutical agents bear the risk of extensive target-mediated drug disposition or atypical pharmacokinetic properties as compared to canonical antibodies. Pharmacokinetics and bio-distribution studies become therefore more and more important during lead optimization. Biologics present, however, greater analytical challenges than small molecule drugs due to the mass and selectivity limitation of mass spectrometry and ligand-binding assay, respectively. Radiocarbon (14C) and its detection methods, such as the emerging 14C cavity ring down spectroscopy (CRDS), thus can play an important role in the large molecule quantitation where a 14C-tag is covalently bound through a stable linker. CRDS has the advantage of a simplified sample preparation and introduction system as compared to accelerator mass spectrometry (AMS) and can be accommodated within an ordinary research laboratory. In this study, we report on the labeling of an anti-IL17 IgG1 model antibody with 14C propionate tag and its detection by CRDS using it as nanotracer (2.1 nCi or 77.7 Bq blended with the therapeutic dose) in a pharmacokinetics study in a preclinical species. We compare these data to data generated by AMS in parallel processed samples. The derived concentration time profiles for anti-IL17 by CRDS were in concordance with the ones derived by AMS and γ-counting of an 125I-labeled anti-IL17 radiotracer and were well described by a 2-compartment population pharmacokinetic model. In addition, antibody tissue distribution coefficients for anti-IL17 were determined by CRDS, which proved to be a direct and sensitive measurement of the extravascular tissue concentration of the antibody when tissue perfusion was applied. Thus, this proof-of-concept study demonstrates that trace 14C-radiolabels and CRDS are an ultrasensitive approach in (pre)clinical pharmacokinetics and bio-distribution studies of new therapeutic entities.
Journal of Pharmacology and Experimental Therapeutics | 2018
Frank A. Engler; Joseph Ryan Polli; Tommy R Li; Bo An; Michael B. Otteneder; Jun Qu; Joseph P. Balthasar
In this study, we examined the effects of target expression, neonatal Fc receptor (FcRn) expression in tumors, and pH-dependent target binding on the disposition of monoclonal antibodies (mAbs) in murine models of colorectal cancer. A panel of anti-carcinoembryonic antigen (CEA) mAbs was developed via standard hybridoma technology and then evaluated for pH-dependent CEA binding. Binding was assessed via immunoassay and radioligand binding assays. 10H6, a murine IgG1 mAb with high affinity for CEA at pH = 7.4 (KD = 12.6 ± 1.7 nM) and reduced affinity at pH = 6.0 (KD = 144.6 ± 21.8 nM), and T84.66, which exhibits pH-independent CEA binding (KD = 1.1 ± 0.11 and 1.4 ± 0.16 nM at pH 7.4 and 6.0), were selected for pharmacokinetic investigations. We evaluated pharmacokinetics after intravenous administration to control mice and to mice bearing tumors with (MC38CEA+, LS174T) and without (MC38CEA−) CEA expression and with or without expression of murine FcRn, at doses of 0.1, 1, and 10 mg/kg. 10H6 displayed linear pharmacokinetics in mice bearing MC38CEA+ or MC38CEA− tumors. T84.66 displayed linear pharmacokinetics in mice with MC38CEA− tumors but dose-dependent nonlinear pharmacokinetics in mice bearing MC38CEA+. In addition to the improved plasma pharmacokinetic profile (i.e., linear pharmacokinetics, longer terminal half-life), 10H6 exhibited improved exposure in MC38CEA+ tumors relative to T84.66. In mice bearing tumors with CEA expression, but lacking expression of murine FcRn (LS174T), 10H6 demonstrated nonlinear pharmacokinetics, with rapid clearance at low dose. These data are consistent with the hypothesis that pH-dependent CEA binding allows mAb dissociation from target in acidified endosomes, enabling FcRn-mediated protection from target-mediated elimination in mice bearing MC38CEA+ tumors.