Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. Powner is active.

Publication


Featured researches published by Michael B. Powner.


Development | 2013

Stem cells in retinal regeneration: past, present and future

Conor Ramsden; Michael B. Powner; Amanda-Jayne F. Carr; Matthew J. K. Smart; Lyndon da Cruz; Peter J. Coffey

Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardts disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.


Ophthalmology | 2010

Perifoveal Muller Cell Depletion in a Case of Macular Telangiectasia Type 2

Michael B. Powner; Mark C. Gillies; Marina Tretiach; Andrew Scott; Robyn H. Guymer; Gregory S. Hageman; Marcus Fruttiger

PURPOSE To assess the histopathologic changes in a postmortem sample derived from an eye donor with macular telangiectasia (MacTel) type 2 to gain further insight into the cause of the disease. DESIGN Clinicopathological case report. PARTICIPANTS Postmortem tissue was collected from 5 different donors: 1 MacTel type 2 patient; 1 healthy control; 2 type 2 diabetic patients, 1 with retinopathy and 1 without retinopathy; and 1 patient with unilateral Coats disease. METHODS Macular pigment distribution in the posterior part of freshly dissected eyes was documented by macrophotography. Paraffin sections from both the macular and peripheral regions were assessed using antigen retrieval and immunohistochemistry to study the distribution of cell-specific markers. Blood vessels were visualized with antibodies directed against collagen IV and claudin 5; glial cells with antibodies against glial fibrillary acidic protein (GFAP), vimentin, glutamine synthetase (GS), and retinaldehyde binding protein (RLBP1, also known as CRALBP); microglia with an antibody against allograft inflammatory factor 1 (also known as Iba1); and photoreceptors with antibodies against rhodopsin and opsin. Using anatomic landmarks, the sections then were matched with the macular pigment distribution and a fluorescein angiogram of the patient that was obtained before the patients death. MAIN OUTCOME MEASURES Presence and distribution of macular pigment and cell-specific markers. RESULTS Macular pigment was absent in the macula. Furthermore, abnormally dilated capillaries were identified in a macular region that correlated spatially with regions of fluorescein leakage in an angiogram that was obtained 12 years before death. These telangiectatic vessels displayed a marked reduction of the basement membrane component collagen IV, indicating vascular pathologic features. The presence of GFAP was limited to retinal astrocytes, and no reactive Müller cells were identified. Importantly, reduced immunoreactivity with Müller cell markers (vimentin, GS, and RLBP1) in the macula was observed. The area that lacked Müller cells corresponded with the region of depleted macular pigment. CONCLUSIONS These findings suggest that macular Müller cell loss or dysfunction is a critical component of MacTel type 2, which may have implications for future treatment strategies.


Trends in Neurosciences | 2013

Development of human embryonic stem cell therapies for age-related macular degeneration

Amanda-Jayne F. Carr; Matthew J. K. Smart; Conor Ramsden; Michael B. Powner; Lyndon da Cruz; Peter J. Coffey

Age-related macular degeneration (AMD) is the leading cause of vision loss in older adults and ultimately leads to the death of photoreceptor cells in the macular area of the neural retina. Currently, treatments are only available for patients with the wet form of AMD. In this review, we describe recent approaches to develop cell-based therapies for the treatment of AMD. Recent research has focused on replacing the retinal pigment epithelium (RPE), a monolayer of cells vital to photoreceptor cell health. We discuss the various methods used to differentiate and purify RPE from human embryonic stem cells (HESC), and describe the surgical approaches being used to transplant these cells in existing and forthcoming clinical trials.


PLOS ONE | 2010

Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature.

Andrew Scott; Michael B. Powner; Pranita Gandhi; Claire E. Clarkin; David H. Gutmann; Randall S. Johnson; Napoleone Ferrara; Marcus Fruttiger

Vascular endothelial growth factor (VEGF) plays a critical role in normal development as well as retinal vasculature disease. During retinal vascularization, VEGF is most strongly expressed by not yet vascularized retinal astrocytes, but also by retinal astrocytes within the developing vascular plexus, suggesting a role for retinal astrocyte-derived VEGF in angiogenesis and vessel network maturation. To test the role of astrocyte-derived VEGF, we used Cre-lox technology in mice to delete VEGF in retinal astrocytes during development. Surprisingly, this only had a minor impact on retinal vasculature development, with only small decreases in plexus spreading, endothelial cell proliferation and survival observed. In contrast, astrocyte VEGF deletion had more pronounced effects on hyperoxia-induced vaso-obliteration and led to the regression of smooth muscle cell-coated radial arteries and veins, which are usually resistant to the vessel-collapsing effects of hyperoxia. These results suggest that VEGF production from retinal astrocytes is relatively dispensable during development, but performs vessel stabilizing functions in the retinal vasculature and might be relevant for retinopathy of prematurity in humans.


Ophthalmology | 2013

Loss of Müller's cells and photoreceptors in macular telangiectasia type 2.

Michael B. Powner; Mark C. Gillies; Meidong Zhu; Kristis Vevis; Alex P. Hunyor; Marcus Fruttiger

PURPOSE To correlate postmortem histology from a patient with macular telangiectasia (MacTel) type 2 with previously recorded clinical imaging data. DESIGN Observational clinicopathologic case report. METHODS The distribution of retinal blood vessels was used to map the location of serial wax sections in color fundus and optical coherence tomography (OCT) images. Fluorescent immunohistochemistry was used to visualize markers for Müllers cells (vimentin and retinaldehyde-binding protein 1), photoreceptors (L-M opsin, rhodopsin, and cytochrome oxidase 2), and the outer limiting membrane (OLM) (zonula occludens 1 and occludin). MAIN OUTCOME MEASURES Distribution of specific markers in immunohistochemistry on retinal sections through the fovea in relation to clinical data. RESULTS The clinically recorded region of macular pigment loss in the macula correlated well with Müllers cell depletion. The OCT data showed a loss of the photoreceptor inner segment/outer segment (IS/OS) junction in the central retina, which correlated well with rod loss but not with cone loss. Markers for the OLM were lost where Müllers cells were lost. CONCLUSIONS We have confirmed our previous finding of Müllers cell loss in MacTel type 2 and have shown that the area of Müllers cell loss matches the area of macular pigment depletion. In this patient, the IS/OS junction seen by OCT was absent in a region where rods were depleted but cones were still present.


PLOS ONE | 2013

Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model

Rana Begum; Michael B. Powner; Natalie Hudson; Chris Hogg; Glen Jeffery

Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH−/−) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients.


Nature Medicine | 2016

Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1

Jean-Sebastien Joyal; Ye Sun; Marin L. Gantner; Zhuo Shao; Lucy Evans; Nicholas Saba; Thomas Fredrick; Samuel Burnim; Jin Sung Kim; Gauri Patel; Aimee M. Juan; Christian G. Hurst; Colman J. Hatton; Zhenghao Cui; Kerry A. Pierce; Patrick Bherer; Edith Aguilar; Michael B. Powner; Kristis Vevis; Michel Boisvert; Zhongjie Fu; Emile Levy; Marcus Fruttiger; Alan Packard; Flavio Rezende; Bruno Maranda; Przemyslaw Sapieha; Jing Chen; Martin Friedlander; Clary B. Clish

Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy–consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr−/− mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr−/− photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr−/− retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.


American Journal of Ophthalmology | 2014

Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography

Dawn A. Sim; Pearse A. Keane; Ranjan Rajendram; Michael Karampelas; Senthil Selvam; Michael B. Powner; Marcus Fruttiger; Adnan Tufail; Catherine Egan

PURPOSE To investigate the association between peripheral and central ischemia in diabetic retinopathy. DESIGN Retrospective, cross-sectional. METHODS Consecutive ultra-widefield fluorescein angiography images were collected from patients with diabetes over a 12-month period. Parameters quantified include the foveal avascular zone (FAZ) area, peripheral ischemic index, peripheral leakage index, and central retinal thickness measurements, as well as visual acuity. The peripheral ischemia or leakage index was calculated as the area of capillary nonperfusion or leakage, expressed as a percentage of the total retinal area. RESULTS Forty-seven eyes of 47 patients were included. A moderate correlation was observed between the peripheral ischemia index and FAZ area (r = 0.49, P = .0001). A moderate correlation was also observed between the peripheral leakage index and FAZ area, but only in eyes that were laser naïve (r = 0.44, P = .02). A thinner retina was observed in eyes with macular ischemia (217 ± 81.8 μm vs 272 ± 36.0 μm) (P = .02), but not peripheral ischemia (258 ± 76.3 μm vs 276 ± 68.0 μm) (P = .24). The relationships between different patterns of peripheral and central macular pathology and visual acuity were evaluated in a step-wise multivariable regression model, and the variables that remained independently associated were age (r = 0.33, P = .03), FAZ area (r = 0.45, P = .02), and central retinal thickness (r = 0.38, P = .01), (R(2)-adjusted = 0.36). CONCLUSIONS Ultra-widefield fluorescein angiography provides an insight into the relationships between diabetic vascular complications in the retinal periphery and central macula. Although we observed relationships between ischemia and vascular leakage in the macula and periphery, it was only macular ischemia and retinal thinning that was independently associated with a reduced visual function.


Investigative Ophthalmology & Visual Science | 2014

Expression of Neonatal Fc Receptor in the Eye

Michael B. Powner; J. McKenzie; Gregory J. Christianson; Derry C. Roopenian; Marcus Fruttiger

PURPOSE The neonatal Fc receptor (FcRn) plays a critical role in the homeostasis and degradation of immunoglobulin G (IgG). It mediates the transport of IgG across epithelial cell barriers and recycles IgG in endothelial cells back into the bloodstream. These functions critically depend on the binding of FcRn to the Fc domain of IgG. The half-life and distribution of intravitreally injected anti-VEGF molecules containing IgG-Fc domains might therefore be affected by FcRn expressed in the eye. In order to establish whether FcRn-Fc(IgG) interactions may occur in the eye, we studied the mRNA and protein distribution of FcRn in postmortem ocular tissue. METHODS We used qPCR to study mRNA expression of the transmembrane chain of FcRn (FCGRT) in retina, optic nerve, RPE/choroid plexus, ciliary body/iris plexus, lens, cornea, and conjunctiva isolated from mouse, rat, pig, and human postmortem eyes and used immunohistochemistry to determine the pattern of FcRn expression in FCGRT-transgenic mouse and human eyes. RESULTS In all four tested species, Fcgrt mRNA was expressed in the retina, RPE/choroid, and the ciliary body/iris, while immunohistochemistry documented FcRn protein expression in the ciliary body epithelium, macrophages, and endothelial cells in the retinal and choroidal vasculature. CONCLUSIONS Our results demonstrate that FcRn has the potential to interact with IgG-Fc domains in the ciliary epithelium and retinal and choroidal vasculature, which might affect the half-life and distribution of intravitreally injected Fc-carrying molecules.


Developmental Cell | 2014

Differential apicobasal VEGF signaling at vascular blood-neural barriers

Natalie Hudson; Michael B. Powner; Mosharraf H. Sarker; Thomas Burgoyne; Matthew Campbell; Zoe K. Ockrim; Roberta Martinelli; Clare E. Futter; Maria B. Grant; Paul A. Fraser; David T. Shima; John Greenwood; Patric Turowski

Summary The vascular endothelium operates in a highly polarized environment, but to date there has been little exploration of apicobasal polarization of its signaling. We show that VEGF-A, histamine, IGFBP3, and LPA trigger unequal endothelial responses when acting from the circulation or the parenchymal side at blood-neural barriers. For VEGF-A, highly polarized receptor distribution contributed to distinct signaling patterns: VEGFR2, which was found to be predominantly abluminal, mediated increased permeability via p38; in contrast, luminal VEGFR1 led to Akt activation and facilitated cytoprotection. Importantly, such differential apicobasal signaling and VEGFR distribution were found in the microvasculature of brain and retina but not lung, indicating that endothelial cells at blood-neural barriers possess specialized signaling compartments that assign different functions depending on whether an agonist is tissue or blood borne.

Collaboration


Dive into the Michael B. Powner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Coffey

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen Jeffery

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Scott

Moorfields Eye Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge