Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda-Jayne F. Carr is active.

Publication


Featured researches published by Amanda-Jayne F. Carr.


PLOS ONE | 2009

Protective Effects of Human iPS-Derived Retinal Pigment Epithelium Cell Transplantation in the Retinal Dystrophic Rat

Amanda-Jayne F. Carr; Anthony Vugler; Sherry T. Hikita; Jean M. Lawrence; Carlos Gias; Li Li Chen; David E. Buchholz; Ahmad Ahmado; Ma’ayan Semo; Matthew J. K. Smart; Shazeen M. Hasan; Lyndon da Cruz; Lincoln V. Johnson; Dennis O. Clegg; Peter J. Coffey

Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs). These induced pluripotent stem (iPS) cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD), the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE). As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS) dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.


Experimental Neurology | 2008

Elucidating the phenomenon of HESC-derived RPE: Anatomy of cell genesis, expansion and retinal transplantation

Anthony Vugler; Amanda-Jayne F. Carr; Jean M. Lawrence; Li Li Chen; Kelly Burrell; Andrew Wright; Peter Lundh; Ma'ayan Semo; Ahmad Ahmado; Carlos Gias; Lyndon da Cruz; Harry Moore; Peter W. Andrews; James Walsh; Peter J. Coffey

Healthy Retinal Pigment Epithelium (RPE) cells are required for proper visual function and the phenomenon of RPE derivation from Human Embryonic Stem Cells (HESC) holds great potential for the treatment of retinal diseases. However, little is known about formation, expansion and expression profile of RPE-like cells derived from HESC (HESC-RPE). By studying the genesis of pigmented foci we identified OTX1/2-positive cell types as potential HESC-RPE precursors. When pigmented foci were excised from culture, HESC-RPE expanded to form extensive monolayers, with pigmented cells at the leading edge assuming a precursor role: de-pigmenting, proliferating, expressing keratin 8 and subsequently re-differentiating. As they expanded and differentiated in vitro, HESC-RPE expressed markers of both developing and mature RPE cells which included OTX1/2, Pax6, PMEL17 and at low levels, RPE65. In vitro, without signals from a developing retinal environment, HESC-RPE could produce regular, polarised monolayers with developmentally important apical and basal features. Following transplantation of HESC-RPE into the degenerating retinal environment of Royal College of Surgeons (RCS) dystrophic rats, the cells survived in the subretinal space, where they maintained low levels of RPE65 expression and remained out of the cell cycle. The HESC-RPE cells responded to the in vivo environment by downregulating Pax6, while maintaining expression of other markers. The presence of rhodopsin-positive material within grafted HESC-RPE indicates that in the future, homogenous transplants of this cell type may be capable of supporting visual function following retinal dystrophy.


Development | 2013

Stem cells in retinal regeneration: past, present and future

Conor Ramsden; Michael B. Powner; Amanda-Jayne F. Carr; Matthew J. K. Smart; Lyndon da Cruz; Peter J. Coffey

Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardts disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.


Trends in Neurosciences | 2013

Development of human embryonic stem cell therapies for age-related macular degeneration

Amanda-Jayne F. Carr; Matthew J. K. Smart; Conor Ramsden; Michael B. Powner; Lyndon da Cruz; Peter J. Coffey

Age-related macular degeneration (AMD) is the leading cause of vision loss in older adults and ultimately leads to the death of photoreceptor cells in the macular area of the neural retina. Currently, treatments are only available for patients with the wet form of AMD. In this review, we describe recent approaches to develop cell-based therapies for the treatment of AMD. Recent research has focused on replacing the retinal pigment epithelium (RPE), a monolayer of cells vital to photoreceptor cell health. We discuss the various methods used to differentiate and purify RPE from human embryonic stem cells (HESC), and describe the surgical approaches being used to transplant these cells in existing and forthcoming clinical trials.


Nature Cell Biology | 2005

Imaging of single light-responsive clock cells reveals fluctuating free-running periods

Amanda-Jayne F. Carr; David Whitmore

Zebrafish tissues and cell lines contain circadian clocks that respond directly to light. Using fluorescence-activated cell sorting, we have isolated clonal cell lines that contain the reporter construct, zfperiod4-luciferase. Bioluminescent assays show that oscillations within cell populations are dampened in constant darkness. However, single-cell imaging reveals that individual cells continue to oscillate, but with widely distributed phases and marked stochastic fluctuations in free-running period. Because these cells are directly light responsive, we can easily follow phase shifts to single light pulses. Here we show that light acts to reset desynchronous cellular oscillations to a common phase, as well as stabilize the subsequent free-running period.


Investigative Ophthalmology & Visual Science | 2011

Induction of Differentiation by Pyruvate and DMEM in the Human Retinal Pigment Epithelium Cell Line ARPE-19

Ahmad Ahmado; Amanda-Jayne F. Carr; Anthony Vugler; Ma'ayan Semo; Carlos Gias; Jean M. Lawrence; Li Li Chen; Fred K. Chen; Patric Turowski; Lyndon da Cruz; Peter J. Coffey

PURPOSE Cultured retinal pigment epithelium (RPE) may become a therapeutic option for transplantation in retinal disease. However maintaining a native RPE phenotype in vitro has proven challenging. The human RPE cell-line ARPE-19 is used widely as an alternative to primary RPE. It is grown in DMEM/F12 medium as standard, but its phenotype is dependent on culture conditions, and many differentiation markers are usually absent. The purpose of this study was to examine how this sensitive phenotype of ARPE-19 can be modulated by growth media with or without the metabolite pyruvate to elucidate better RPE growth conditions. METHODS ARPE-19 cells at passages p22 to p28 were cultured on filters for up to 3 months in DMEM/F12 or DMEM media with or without pyruvate and 1% fetal calf serum. Assessment of differentiation was performed using pigmentation, immunocytochemistry, protein/mRNA expression, transepithelial resistance, VEGF secretion, and ultrastructure. RESULTS Pyruvate, in combination with DMEM, induced dark pigmentation and promoted differentiation markers such as CRALBP and MerTK. Importantly, RPE65 protein was detected by Western blotting and was enhanced by pyruvate, high glucose, and DMEM. ARPE-19 cells maintained in this medium could also phagocytose human photoreceptor outer segments (POS). VEGF secretion was greater in DMEM cultures and was affected by glucose but not by pyruvate. Pigmentation never occurred in DMEM/F12. CONCLUSIONS This study demonstrated important differentiation markers, including pigmentation and Western blots of RPE65 protein, and showed human POS phagocytosis in ARPE-19 cultures using a simple differentiation protocol. The results favor the use of high-glucose DMEM with pyruvate for future RPE differentiation studies.


Human Molecular Genetics | 2015

Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells

Nele Schwarz; Amanda-Jayne F. Carr; Amelia Lane; Fabian Moeller; Li Li Chen; Mònica Aguilà; Britta Nommiste; Manickam N. Muthiah; Naheed Kanuga; Uwe Wolfrum; Kerstin Nagel-Wolfrum; Lyndon da Cruz; Peter J. Coffey; Michael E. Cheetham; Alison J. Hardcastle

Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization, Golgi cohesion and Gβ1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren), we were able to restore up to 20% of endogenous, full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients.


Chronobiology International | 2006

Light reaches the very heart of the zebrafish clock

Amanda-Jayne F. Carr; T. Katherine Tamai; Lucy C. Young; Veronica Ferrer; Marcus P.S. Dekens; David Whitmore

Zebrafish are typically used as a model system to study various aspects of developmental biology, largely as a consequence of their ex vivo development, high degree of transparency, and, of course, ability to perform forward genetic mutant screens. More recently, zebrafish have been developed as a model system with which to study circadian clocks. Cell lines generated from early‐stage zebrafish embryos contain clocks that are directly light‐responsive. We describe recent experiments using single‐cell luminescent imaging approaches to study clock function in this novel cell line system. Furthermore, studies examining the process of entrainment to light pulses within this cell population are described in this review, as are experiments examining light‐responsiveness of early‐stage zebrafish embryos.


Nature Biotechnology | 2018

Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration

Lyndon da Cruz; Kate Fynes; Odysseas Georgiadis; Julie Kerby; Yvonne H.-L. Luo; Ahmad Ahmado; Amanda Vernon; Julie T. Daniels; Britta Nommiste; Shazeen M. Hasan; Sakina B Gooljar; Amanda-Jayne F. Carr; Anthony Vugler; Conor Ramsden; Magda Bictash; Mike Fenster; Juliette Steer; Tricia Harbinson; Anna Wilbrey; Adnan Tufail; Gang Feng; Mark Whitlock; Anthony G. Robson; Graham E. Holder; Mandeep S. Sagoo; Peter T Loudon; Paul J. Whiting; Peter J. Coffey

Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)–derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.


Computational and structural biotechnology journal | 2015

Using Stem Cells to Model Diseases of the Outer Retina

Camille Yvon; Conor Ramsden; Amelia Lane; Michael B. Powner; Lyndon da Cruz; Peter J. Coffey; Amanda-Jayne F. Carr

Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).

Collaboration


Dive into the Amanda-Jayne F. Carr's collaboration.

Top Co-Authors

Avatar

Peter J. Coffey

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Vugler

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Li Li Chen

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britta Nommiste

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Ahmad Ahmado

University College London

View shared research outputs
Top Co-Authors

Avatar

Amelia Lane

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge