Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. Prentice is active.

Publication


Featured researches published by Michael B. Prentice.


Nature | 2001

Genome sequence of Yersinia pestis , the causative agent of plague

Julian Parkhill; Brendan W. Wren; Nicholas R. Thomson; Richard W. Titball; Matthew T. G. Holden; Michael B. Prentice; Mohammed Sebaihia; K. D. James; Carol Churcher; Karen Mungall; Stephen Baker; D. Basham; Stephen D. Bentley; Karen Brooks; Ana Cerdeño-Tárraga; Tracey Chillingworth; A. Cronin; Robert Davies; Paul Davis; Gordon Dougan; Theresa Feltwell; N. Hamlin; S. Holroyd; Kay Jagels; Andrey V. Karlyshev; S. Leather; Sharon Moule; Petra C. F. Oyston; Michael A. Quail; Kim Rutherford

The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.


PLOS Genetics | 2006

The Complete Genome Sequence and Comparative Genome Analysis of the High Pathogenicity Yersinia enterocolitica Strain 8081

Nicholas R. Thomson; Sarah L. Howard; Brendan W. Wren; Matthew T. G. Holden; Lisa Crossman; Gregory L. Challis; Carol Churcher; Karen Mungall; Karen Brooks; Tracey Chillingworth; Theresa Feltwell; Zahra Abdellah; Heidi Hauser; Kay Jagels; Mark Maddison; Sharon Moule; Mandy Sanders; Sally Whitehead; Michael A. Quail; Gordon Dougan; Julian Parkhill; Michael B. Prentice

The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.


Molecular Cell | 2010

Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement

Joshua B. Parsons; Stefanie Frank; David Bhella; Mingzhi Liang; Michael B. Prentice; Daniel P. Mulvihill; Martin J. Warren

Compartmentalization is an important process, since it allows the segregation of metabolic activities and, in the era of synthetic biology, represents an important tool by which defined microenvironments can be created for specific metabolic functions. Indeed, some bacteria make specialized proteinaceous metabolic compartments called bacterial microcompartments (BMCs) or metabolosomes. Here we demonstrate that the shell of the metabolosome (representing an empty BMC) can be produced within E. coli cells by the coordinated expression of genes encoding structural proteins. A plethora of diverse structures can be generated by changing the expression profile of these genes, including the formation of large axial filaments that interfere with septation. Fusing GFP to PduC, PduD, or PduV, none of which are shell proteins, allows regiospecific targeting of the reporter group to the empty BMC. Live cell imaging provides unexpected evidence of filament-associated BMC movement within the cell in the presence of PduV.


Journal of Bacteriology | 2008

Lactobacillus reuteri DSM 20016 Produces Cobalamin-Dependent Diol Dehydratase in Metabolosomes and Metabolizes 1,2-Propanediol by Disproportionation

Dinesh Diraviam Sriramulu; Mingzhi Liang; Diana Hernandez-Romero; Evelyne Raux-Deery; Heinrich Lünsdorf; Joshua B. Parsons; Martin J. Warren; Michael B. Prentice

A Lactobacillus reuteri strain isolated from sourdough is known to produce the vitamin cobalamin. The organism requires this for glycerol cofermentation by a cobalamin-dependent enzyme, usually termed glycerol dehydratase, in the synthesis of the antimicrobial substance reuterin. We show that the cobalamin-synthesizing capacity of another L. reuteri strain (20016, the type strain, isolated from the human gut and recently sequenced as F275) is genetically and phenotypically linked, as in the Enterobacteriaceae, to the production of a cobalamin-dependent enzyme which is associated with a bacterial microcompartment (metabolosome) and known as diol dehydratase. We show that this enzyme allows L. reuteri to carry out a disproportionation reaction converting 1,2-propanediol to propionate and propanol. The wide distribution of this operon suggests that it is adapted to horizontal transmission between bacteria. However, there are significant genetic and phenotypic differences between the Lactobacillus background and the Enterobacteriaceae. Electron microscopy reveals that the bacterial microcompartment in L. reuteri occupies a smaller percentage of the cytoplasm than in gram-negative bacteria. DNA sequence data show evidence of a regulatory control mechanism different from that in gram-negative bacteria, with the presence of a catabolite-responsive element (CRE) sequence immediately upstream of the pdu operon encoding diol dehydratase and metabolosome structural genes in L. reuteri. The metabolosome-associated diol dehydratase we describe is the only candidate glycerol dehydratase present on inspection of the L. reuteri F275 genome sequence.


Journal of Biological Chemistry | 2008

Biochemical and Structural Insights into Bacterial Organelle Form and Biogenesis

Joshua B. Parsons; Sriramulu D. Dinesh; Evelyne Deery; Helen K. Leech; Amanda A. Brindley; Dana Heldt; Steffanie Frank; C. Mark Smales; Heinrich Lünsdorf; Alain Rambach; Mhairi Gass; Andrew Bleloch; Kirsty J. McClean; Andrew W. Munro; Stephen E. J. Rigby; Martin J. Warren; Michael B. Prentice

Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g. 1,2-propanediol or ethanolamine utilization). We show that the 21 gene regulon specifying the pdu organelle and propanediol utilization enzymes from Citrobacter freundii is fully functional when cloned in Escherichia coli, both producing metabolosomes and allowing propanediol utilization. Genetic manipulation of the level of specific shell proteins resulted in the formation of aberrantly shaped metabolosomes, providing evidence for their involvement as delimiting entities in the organelle. This is the first demonstration of complete recombinant metabolosome activity transferred in a single step and supports phylogenetic evidence that the pdu genes are readily horizontally transmissible. One of the predicted shell proteins (PduT) was found to have a novel Fe-S center formed between four protein subunits. The recombinant model will facilitate future experiments establishing the structure and assembly of these multiprotein assemblages and their fate when the specific metabolic function is no longer required.


ACS Synthetic Biology | 2014

Solution Structure of a Bacterial Microcompartment Targeting Peptide and Its Application in the Construction of an Ethanol Bioreactor

Andrew D. Lawrence; Stefanie Frank; Sarah Newnham; Matthew J. Lee; Ian R. Brown; Wei-Feng Xue; Michelle L. Rowe; Daniel P. Mulvihill; Michael B. Prentice; Mark J. Howard; Martin J. Warren

Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Parallel independent evolution of pathogenicity within the genus Yersinia.

Sandra Reuter; Thomas Richard Connor; Lars Barquist; Danielle Walker; Theresa Feltwell; Simon R. Harris; Maria Fookes; Miquette Hall; Nicola K. Petty; Thilo M. Fuchs; Jukka Corander; Muriel Dufour; Tamara Ringwood; Cyril Savin; Christiane Bouchier; Liliane Martin; Minna Miettinen; Mikhail Shubin; Julia M. Riehm; Riikka Laukkanen-Ninios; Leila M. Sihvonen; Anja Siitonen; Mikael Skurnik; Juliana Pfrimer Falcão; Hiroshi Fukushima; Holger C. Scholz; Michael B. Prentice; Brendan W. Wren; Julian Parkhill; Elisabeth Carniel

Significance Our past understanding of pathogen evolution has been fragmented because of tendencies to study human clinical isolates. To understand the evolutionary trends of pathogenic bacteria though, we need the context of their nonpathogenic relatives. Our unique and detailed dataset allows description of the parallel evolution of two key human pathogens: the causative agents of plague and Yersinia diarrhea. The analysis reveals an emerging pattern where few virulence-related functions are found in all pathogenic lineages, representing key “foothold” moments that mark the emergence of these pathogens. Functional gene loss and metabolic streamlining are equally complementing the evolution of Yersinia across the pathogenic spectrum. The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.


Journal of Biotechnology | 2013

Bacterial microcompartments moving into a synthetic biological world

Stefanie Frank; Andrew D. Lawrence; Michael B. Prentice; Martin J. Warren

Bacterial microcompartments are proteinaceous organelles that are found in a broad range of bacteria. They are composed of an outer protein shell that encases a specific metabolic process. Examples include the carboxysome, which houses enzymes associated with carbon fixation, and the propanediol metabolosome, which contains enzymes linked with the catabolism of propanediol to propionic acid. In this article the molecular structure of bacterial microcompartments is examined and the potential to engineer these intriguing organelles for biotechnological applications is explored.


Journal of Bacteriology | 2001

Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar typhi plasmid

Michael B. Prentice; Keith D. James; Julian Parkhill; Stephen Baker; Kim Stevens; Mark Simmonds; Karen Mungall; Carol Churcher; Petra C. F. Oyston; Richard W. Titball; Brendan W. Wren; John Wain; Derek Pickard; Tran Tinh Hien; Jeremy Farrar; Gordon Dougan

Population genetic studies suggest that Yersinia pestis, the cause of plague, is a clonal pathogen that has recently emerged from Yersinia pseudotuberculosis. Plasmid acquisition is likely to have been a key element in this evolutionary leap from an enteric to a flea-transmitted systemic pathogen. However, the origin of Y. pestis-specific plasmids remains obscure. We demonstrate specific plasmid rearrangements in different Y. pestis strains which distinguish Y. pestis bv. Orientalis strains from other biovars. We also present evidence for plasmid-associated DNA exchange between Y. pestis and the exclusively human pathogen Salmonella enterica serovar Typhi.


Foodborne Pathogens and Disease | 2012

Yersinia enterocolitica: a brief review of the issues relating to the zoonotic pathogen, public health challenges, and the pork production chain.

Niall Drummond; Brenda P. Murphy; Tamara Ringwood; Michael B. Prentice; James F. Buckley; Séamus Fanning

Yersinia enterocolitica is a zoonotic agent that causes gastrointestinal disease in humans, as well as reactive arthritis and erythema nodosum. Enteropathogenic Yersinia are the etiological agents for yersiniosis, which can be acquired through the consumption of contaminated foods. As porcine animals are the main carriers of Y. enterocolitica, food safety measures to minimize human infection are of increasing interest to the scientific and medical community. In this review, we examine why it is imperative that information on the reservoirs, prevalence, virulence, and ability of this pathogen to survive in different environments is further investigated to provide rational measures to prevent or decrease associated disease risks.

Collaboration


Dive into the Michael B. Prentice's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingzhi Liang

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Nicholas R. Thomson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge