Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Borges is active.

Publication


Featured researches published by Michael Borges.


Science | 2009

Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene

Siân Jones; Ralph H. Hruban; Mihoko Kamiyama; Michael Borges; Xiaosong Zhang; D. Williams Parsons; Jimmy Lin; Emily Palmisano; Kieran Brune; Elizabeth M. Jaffee; Christine A. Iacobuzio-Donahue; Anirban Maitra; Giovanni Parmigiani; Scott E. Kern; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; James R. Eshleman; Michael Goggins; Alison P. Klein

Through complete sequencing of the protein-coding genes in a patient with familial pancreatic cancer, we identified a germline, truncating mutation in PALB2 that appeared responsible for this patients predisposition to the disease. Analysis of 96 additional patients with familial pancreatic cancer revealed three distinct protein-truncating mutations, thereby validating the role of PALB2 as a susceptibility gene for pancreatic cancer. PALB2 mutations have been previously reported in patients with familial breast cancer, and the PALB2 protein is a binding partner for BRCA2. These results illustrate that complete, unbiased sequencing of protein-coding genes can lead to the identification of a gene responsible for a hereditary disease.


Gastroenterology | 2012

Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia

Mitsuro Kanda; Hanno Matthaei; Jian Wu; Seung-Mo Hong; Jun Yu; Michael Borges; Ralph H. Hruban; Anirban Maitra; Kenneth W. Kinzler; Bert Vogelstein; Michael Goggins

More information is needed about genetic factors that initiate development of pancreatic intraepithelial neoplasms-the most common precursors of pancreatic ductal adenocarcinoma. We show that more than 99% of the earliest-stage, lowest-grade, pancreatic intraepithelial neoplasm-1 lesions contain mutations in KRAS, p16/CDKN2A, GNAS, or BRAF. These findings could improve our understanding of the development and progression of these premalignant lesions.


Cancer Research | 2010

Pancreatic Cancers Epigenetically Silence SIP1 and Hypomethylate and Overexpress miR-200a/200b in Association with Elevated Circulating miR-200a and miR-200b Levels

Ang Li; Noriyuki Omura; Seung-Mo Hong; Audrey Vincent; Kimberly Walter; Margaret Griffith; Michael Borges; Michael Goggins

Aberrant DNA methylation and microRNA expression play important roles in the pathogenesis of pancreatic cancer. While interrogating differentially methylated CpG islands in pancreatic cancer, we identified two members of miR-200 family, miR-200a and miR-200b, that were hypomethylated and overexpressed in pancreatic cancer. We also identified prevalent hypermethylation and silencing of one of their downstream targets, SIP1 (ZFHX1B, ZEB2), whose protein product suppresses E-cadherin expression and contributes to epithelial mesenchymal transition. In a panel of 23 pancreatic cell lines, we observed a reciprocal correlation between miR-200, SIP1, and E-cadherin expression, with pancreatic cancer-associated fibroblasts showing the opposite expression pattern to most pancreatic cancers. In Panc-1 cells, which express SIP1, have low E-cadherin expression, and do not express miR-200a or miR-200b, treatment with miR-200a and miR-200b downregulated SIP1 mRNA and increased E-cadherin expression. However, most pancreatic cancers express miR-200a and miR-200b, but this expression does not affect SIP1 expression, as the SIP1 promoter is silenced by hypermethylation and in these cancers E-cadherin is generally expressed. Both miR-200a and miR-200b were significantly elevated in the sera of pancreatic cancer and chronic pancreatitis patients compared with healthy controls (P < 0.0001), yielding receiver operating characteristic curve areas of 0.861 and 0.85, respectively. In conclusion, most pancreatic cancers display hypomethylation and overexpression of miR-200a and miR-200b, silencing of SIP1 by promoter methylation, and retention of E-cadherin expression. The elevated serum levels of miR-200a and miR-200b in most patients with pancreatic cancer could have diagnostic utility.


Molecular and Cellular Biology | 2002

Notch Signaling Induces Rapid Degradation of Achaete-Scute Homolog 1

Virote Sriuranpong; Michael Borges; Christopher L. Strock; Eric K. Nakakura; D. Neil Watkins; Christine M. Blaumueller; Barry D. Nelkin; Douglas W. Ball

ABSTRACT In neural development, Notch signaling plays a key role in restricting neuronal differentiation, promoting the maintenance of progenitor cells. Classically, Notch signaling causes transactivation of Hairy-enhancer of Split (HES) genes which leads to transcriptional repression of neural determination and differentiation genes. We now report that in addition to its known transcriptional mechanism, Notch signaling also leads to rapid degradation of the basic helix-loop-helix (bHLH) transcription factor human achaete-scute homolog 1 (hASH1). Using recombinant adenoviruses expressing active Notch1 in small-cell lung cancer cells, we showed that the initial appearance of Notch1 coincided with the loss of hASH1 protein, preceding the full decay of hASH1 mRNA. Overexpression of HES1 alone was capable of down-regulating hASH1 mRNA but could not replicate the acute reduction of hASH1 protein induced by Notch1. When adenoviral hASH1 was coinfected with Notch1, we still observed a dramatic and abrupt loss of the exogenous hASH1 protein, despite high levels of ongoing hASH1 RNA expression. Notch1 treatment decreased the apparent half-life of the adenoviral hASH1 protein and increased the fraction of hASH1 which was polyubiquitinylated. The proteasome inhibitor MG132 reversed the Notch1-induced degradation. The Notch RAM domain was dispensable but a lack of the OPA and PEST domains inactivated this Notch1 action. Overexpression of the hASH1-dimerizing partner E12 could protect hASH1 from degradation. This novel function of activated Notch to rapidly degrade a class II bHLH protein may prove to be important in many contexts in development and in cancer.


American Journal of Pathology | 1999

PGP9.5 As a Candidate Tumor Marker for Non-Small-Cell Lung Cancer

Kenji Hibi; William H. Westra; Michael Borges; Steve Goodman; David Sidransky; Jin Jen

PGP9.5 is a neurospecific peptide that functions to remove ubiquitin from ubiquitinated proteins and prevents them from targeted degradation by proteasomes. Using the serial analysis of gene expression method (SAGE), we observed that the PGP9.5 transcript was highly expressed in primary lung cancers and lung cancer cell lines but was not detectable in the normal lung. Here we examined the expression of PGP9.5 protein in normal lung epithelium, lung tumor cell lines, and 98 resected primary non-small-cell lung carcinomas (NSCLCs). We found PGP9.5 reactivity in normal lung in a pattern compatible with K-cells of the diffuse neuroendocrine system. However, the PGP9.5 was present in both small-cell lung cancer (SCLC) and NSCLC cell lines (22/24) independent of neuronal differentiation. In primary NSCLCs, 54% (53/98) of the cases had positive PGP9.5 staining, and the expression of protein was strongly associated with pathological stage of the cancer. It was present in 44% (29/66) of stage I NSCLCs and in 75% (24/32) of stage II and IIIA NSCLCs (p = 0.0032). These results suggest that the increased expression of PGP9.5 is specifically associated with lung cancer development and may serve as a potential marker for the detection of lung cancer.


Molecular and Cellular Biology | 1996

RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas

A Thiagalingam; A. De Bustros; Michael Borges; R Jasti; D Compton; L Diamond; Mack Mabry; Douglas W. Ball; Stephen B. Baylin; Barry D. Nelkin

An activated ras oncogene induces a program of differentiation in the human medullary thyroid cancer cell line TT. This differentiation process is accompanied by a marked increase in the transcription of the human calcitonin (CT) gene. We have localized a unique Ras-responsive transcriptional element (RRE) in the CT gene promoter. DNase I protection indicates two domains of protein-DNA interaction, and each domain separately can confer Ras-mediated transcriptional inducibility. This bipartite RRE was also found to be Raf responsive. By affinity screening, we have cloned a cDNA coding for a zinc finger transcription factor (RREB-1) that binds to the distal RRE. The consensus binding site for this factor is CCCCAAACCACCCC. RREB-1 is expressed ubiquitously in human tissues outside the adult brain. Overexpression of RREB-1 protein in TT cells confers the ability to mediate increased transactivation of the CT gene promoter-reporter construct during Ras- or Raf-induced differentiation. These data suggest that RREB-1 may play a role in Ras and Raf signal transduction in medullary thyroid cancer and other cells.


Gut | 2013

Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts

Mitsuro Kanda; Spencer Knight; Mark Topazian; Sapna Syngal; James J. Farrell; Jeffrey H. Lee; Ihab R. Kamel; Anne Marie Lennon; Michael Borges; Angela Young; Sho Fujiwara; Junro Seike; James R. Eshleman; Ralph H. Hruban; Marcia I. Canto; Michael Goggins

Objective Pancreatic cysts are commonly detected in patients undergoing pancreatic imaging. Better approaches are needed to characterise these lesions. In this study we evaluated the utility of detecting mutant DNA in secretin-stimulated pancreatic juice. Design Secretin-stimulated pancreatic juice was collected from the duodenum of 291 subjects enrolled in Cancer of the Pancreas Screening trials at five US academic medical centres. The study population included subjects with a familial predisposition to pancreatic cancer who underwent pancreatic screening, and disease controls with normal pancreata, chronic pancreatitis, sporadic intraductal papillary mucinous neoplasm (IPMN) or other neoplasms. Somatic GNAS mutations (reported prevalence ∼66% of IPMNs) were measured using digital high-resolution melt-curve analysis and pyrosequencing. Results GNAS mutations were detected in secretin-stimulated pancreatic juice samples of 50 of 78 familial and sporadic cases of IPMN(s) (64.1%), 15 of 33 (45.5%) with only diminutive cysts (<5 mm), but none of 57 disease controls. GNAS mutations were also detected in five of 123 screened subjects without a pancreatic cyst. Among 97 subjects who had serial pancreatic evaluations, GNAS mutations detected in baseline juice samples predicted subsequent emergence or increasing size of pancreatic cysts. Conclusion Duodenal collections of secretin-stimulated pancreatic juice from patients with IPMNs have a similar prevalence of mutant GNAS to primary IPMNs, indicating that these samples are an excellent source of mutant DNA from the pancreas. The detection of GNAS mutations before an IPMN is visible suggests that analysis of pancreatic juice has the potential to help in the risk stratification and surveillance of patients undergoing pancreatic screening.


Clinical Cancer Research | 2010

Overexpression of Smoothened activates the Sonic Hedgehog signaling pathway in pancreatic cancer associated fibroblasts

Kimberly Walter; Noriyuki Omura; Seung-Mo Hong; Margaret Griffith; Audrey Vincent; Michael Borges; Michael Goggins

Purpose: Accumulating evidence suggests that cancer-associated stromal fibroblasts (CAF) contribute to tumor growth by actively communicating with cancer cells. Our aim is to identify signaling pathways involved in tumor-stromal cell interactions in human pancreatic cancer. Experimental Design: We established primary fibroblast cultures from human pancreatic adenocarcinomas and nonneoplastic pancreas tissues. To identify differentially expressed genes in CAFs, we did gene expression profiling of human pancreatic CAFs and nonneoplastic pancreatic fibroblasts. Results: The Hedgehog receptor Smoothened (SMO) was upregulated in CAFs relative to control fibroblasts. CAFs expressing SMO could transduce the Sonic hedgehog signal to activate Gli1 expression, and small interfering RNA knockdown of SMO blocked the induction of Gli1 in these cells. Stromal fibroblasts of human primary pancreatic adenocarcinomas overexpressed Smo compared with normal pancreatic fibroblasts. Conclusions: These findings implicate overexpression of Smo as a mechanism for the activation of Hedgehog signaling in human pancreatic CAFs and suggest that stromal cells may be a therapeutic target for Smo antagonists in pancreatic cancer. Clin Cancer Res; 16(6); 1781–9


Clinical Gastroenterology and Hepatology | 2013

Mutant TP53 in Duodenal Samples of Pancreatic Juice From Patients With Pancreatic Cancer or High-Grade Dysplasia

Mitsuro Kanda; Yoshihiko Sadakari; Michael Borges; Mark Topazian; James J. Farrell; Sapna Syngal; Jeffrey E. Lee; Ihab R. Kamel; Anne Marie Lennon; Spencer Knight; Sho Fujiwara; Ralph H. Hruban; Marcia I. Canto; Michael Goggins

BACKGROUND & AIMS Imaging tests can identify patients with pancreatic neoplastic cysts but not microscopic dysplasia. We investigated whether mutant TP53 can be detected in duodenal samples of secretin-stimulated pancreatic juice, and whether this assay can be used to screen for high-grade dysplasia and invasive pancreatic cancer. METHODS We determined the prevalence of mutant TP53 in microdissected pancreatic intraepithelial neoplasias (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and invasive adenocarcinomas. TP53 mutations were quantified by digital high-resolution melt-curve analysis and sequencing of secretin-stimulated pancreatic juice samples, collected from duodena of 180 subjects enrolled in Cancer of the Pancreas Screening trials; patients were enrolled because of familial and/or inherited predisposition to pancreatic cancer, or as controls. RESULTS TP53 mutations were identified in 9.1% of intermediate-grade IPMNs (2 of 22), 17.8% of PanIN-2 (8 of 45), 38.1% of high-grade IPMNs (8 of 21), 47.6% of PanIN-3 (10 of 21), and 75% of invasive pancreatic adenocarcinomas (15 of 20); no TP53 mutations were found in PanIN-1 lesions or low-grade IPMNs. TP53 mutations were detected in duodenal samples of pancreatic juice from 29 of 43 patients with pancreatic ductal adenocarcinoma (67.4% sensitivity; 95% confidence interval, 0.52-0.80) and 4 of 8 patients with high-grade lesions (PanIN-3 and high-grade IPMN). No TP53 mutations were identified in samples from 58 controls or 55 screened individuals without evidence of advanced lesions. CONCLUSIONS We detected mutant TP53 in secretin-stimulated pancreatic juice samples collected from duodena of patients with high-grade dysplasia or invasive pancreatic cancer. Tests for mutant TP53 might be developed to improve the diagnosis of and screening for pancreatic cancer and high-grade dysplasia. Clinical Trial numbers: NCT00438906 and NCT00714701.


Nature Genetics | 2015

Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer.

Erica J. Childs; Evelina Mocci; Daniele Campa; Paige M. Bracci; Steven Gallinger; Michael Goggins; Donghui Li; Rachel E. Neale; Sara H. Olson; Ghislaine Scelo; Laufey Amundadottir; William R. Bamlet; Maarten F. Bijlsma; Amanda Blackford; Michael Borges; Paul Brennan; Hermann Brenner; H. Bas Bueno-de-Mesquita; Federico Canzian; Gabriele Capurso; Giulia Martina Cavestro; Kari G. Chaffee; Stephen J. Chanock; Sean P. Cleary; Michelle Cotterchio; Lenka Foretova; Charles S. Fuchs; Niccola Funel; Maria Gazouli; Manal Hassan

Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19–1.34, P = 1.42 × 10−14), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84–0.92, P = 1.41 × 10−8) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85–0.93, P = 2.35 × 10−8). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09–1.19, P = 3.36 × 10−9), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.

Collaboration


Dive into the Michael Borges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph H. Hruban

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Eshleman

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jun Yu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge