Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Bots is active.

Publication


Featured researches published by Michael Bots.


Clinical Cancer Research | 2009

Rational Combinations Using HDAC Inhibitors

Michael Bots; Ricky W. Johnstone

In addition to well-characterized genetic abnormalities that lead to cancer onset and progression, it is now recognized that alterations to the epigenome may also play a significant role in oncogenesis. As a result, epigenetic-modulating agents such as histone deacetylase inhibitors (HDACi) have attracted enormous attention as anticancer drugs. In numerous in vitro and preclinical settings, these compounds have shown their vast potential as single agent anticancer therapies, but unfortunately equivalent responses have not always been observed in patients. Given the pleiotropic effects HDACi have on malignant cells, their true therapeutic potential most likely lies in combination with other anticancer drugs. In this review we will focus on the anticancer effects of HDACi when combined with other cancer therapeutics with an emphasis on those combinations based on a strong molecular rationale.


Blood | 2009

The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy

Leigh Ellis; Michael Bots; Ralph K. Lindemann; Jessica E. Bolden; Andrea Newbold; Leonie A. Cluse; Clare L. Scott; Andreas Strasser; Peter Atadja; Scott W. Lowe; Ricky W. Johnstone

LAQ824 and LBH589 (panobinostat) are histone deacetylase inhibitors (HDACi) developed as cancer therapeutics and we have used the Emu-myc lymphoma model to identify the molecular events required for their antitumor effects. Induction of tumor cell death was necessary for these agents to mediate therapeutic responses in vivo and both HDACi engaged the intrinsic apoptotic cascade that did not require p53. Death receptor pathway blockade had no effect on the therapeutic activities of LAQ824 and LBH589; however, overexpression of Bcl-2 or Bcl-X(L) protected lymphoma cells from HDACi-induced killing and suppressed their therapeutic activities. Deletion of Apaf-1 or Caspase-9 delayed HDACi-induced lymphoma killing in vitro and in vivo, associated with suppression of many biochemical indicators of apoptosis, but did not provide long-term resistance to these agents and failed to inhibit their therapeutic activities. Emu-myc lymphomas lacking a functional apoptosome displayed morphologic and biochemical features of autophagy after treatment with LAQ824 and LBH589, indicating that, in the absence of a complete intrinsic apoptosis pathway involving apoptosome formation, these HDACi can still mediate a therapeutic response. Our data indicate that damage to the mitochondria is the key event necessary for LAQ824 and LBH589 to mediate tumor cell death and a robust therapeutic response.


Journal of Immunology | 2010

Asymmetric Cell Division of T Cells upon Antigen Presentation Uses Multiple Conserved Mechanisms

Jane Oliaro; Vanessa Van Ham; Faruk Sacirbegovic; Anupama Pasam; Ze’ev Bomzon; Kim Pham; Mandy J. Ludford-Menting; Nigel J. Waterhouse; Michael Bots; Edwin D. Hawkins; Sally V. Watt; Leonie A. Cluse; Christopher J. Clarke; David J. Izon; John T. Chang; Natalie Thompson; Min Gu; Ricky W. Johnstone; Mark J. Smyth; Patrick O. Humbert; Steven L. Reiner; Sarah M. Russell

Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8+ T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.


Blood | 2014

Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors

Michael Bots; Inge Verbrugge; Benjamin P. Martin; Jessica M. Salmon; Margherita Ghisi; Adele Baker; Kym Stanley; Jake Shortt; Gert J. Ossenkoppele; Johannes Zuber; Amy R. Rappaport; Peter Atadja; Scott W. Lowe; Ricky W. Johnstone

Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents.


Blood | 2012

NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma.

Stephen R. Mattarollo; Alison C. West; Kim Steegh; Helene Duret; Christophe Paget; Ben P. Martin; Geoffrey M. Matthews; Jake Shortt; Marta Chesi; P. Leif Bergsagel; Michael Bots; Johannes Zuber; Scott W. Lowe; Ricky W. Johnstone; Mark J. Smyth

Immunomodulators are effective in controlling hematologic malignancy by initiating or reactivating host antitumor immunity to otherwise poorly immunogenic and immune suppressive cancers. We aimed to boost antitumor immunity in B-cell lymphoma by developing a tumor cell vaccine incorporating α-galactosylceramide (α-GalCer) that targets the immune adjuvant properties of NKT cells. In the Eμ-myc transgenic mouse model, single therapeutic vaccination of irradiated, α-GalCer-loaded autologous tumor cells was sufficient to significantly inhibit growth of established tumors and prolong survival. Vaccine-induced antilymphoma immunity required NKT cells, NK cells, and CD8 T cells, and early IL-12-dependent production of IFN-γ. CD4 T cells, gamma/delta T cells, and IL-18 were not critical. Vaccine treatment induced a large systemic spike of IFN-γ and transient peripheral expansion of both NKT cells and NK cells, the major sources of IFN-γ. Furthermore, this vaccine approach was assessed in several other hematopoietic tumor models and was also therapeutically effective against AML-ETO9a acute myeloid leukemia. Replacing α-GalCer with β-mannosylceramide resulted in prolonged protection against Eμ-myc lymphoma. Overall, our results demonstrate a potent immune adjuvant effect of NKT cell ligands in therapeutic anticancer vaccination against oncogene-driven lymphomas, and this work supports clinical investigation of NKT cell-based immunotherapy in patients with hematologic malignancies.


Cancer Discovery | 2013

The mTORC1 Inhibitor Everolimus Prevents and Treats Eμ-Myc Lymphoma by Restoring Oncogene-Induced Senescence

Meaghan Wall; Gretchen Poortinga; Kym Stanley; Ralph K. Lindemann; Michael Bots; Christopher J. Chan; Megan J. Bywater; Kathryn M. Kinross; Megan Victoria Astle; Kelly Waldeck; Katherine M. Hannan; Jake Shortt; Mark J. Smyth; Scott W. Lowe; Ross D. Hannan; Richard B. Pearson; Ricky W. Johnstone; Grant A. McArthur

UNLABELLED MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eμ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eμ-Myc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established Eμ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes. SIGNIFICANCE This work provides novel insights into the requirements for MYC-induced oncogenesis by showing that mTORC1 activity is necessary to bypass senescence during transformation of B lymphocytes. Furthermore, tumor eradication through senescence elicited by targeted inhibition of mTORC1 identifies a previously uncharacterized mechanism responsible for significant anticancer activity of rapamycin analogues and serves as proof-of-concept that senescence can be harnessed for therapeutic benefit


Immunology and Cell Biology | 2006

Serpins prevent granzyme-induced death in a species-specific manner

Michael Bots; Liesbeth van Bostelen; Mirjam Tga Rademaker; Rienk Offringa; Jan Paul Medema

Expression of serine protease inhibitors (serpins) is one of the mechanisms used by tumour cells to escape immune surveillance. Previously, we have shown that expression of serpins SPI‐6 and SPI‐CI, respectively, renders tumour cells resistant to granzyme B (GrB)‐mediated death and granzyme M (GrM)‐mediated death. To obtain better insight into the interaction between serpins and their target proteases, we investigated the roles of protease inhibitor (PI)‐9 and SPI‐6 in the resistance to GrB‐mediated and CD95‐mediated death in further detail. Neither human PI‐9 nor its murine orthologue SPI‐6 was capable of preventing CD95‐induced apoptosis in murine or human cells, indicating that these serpins do not inhibit the activation of apical caspases in this pathway. High expression of PI‐9 or SPI‐6 did prevent apoptosis induced by human GrB. Strikingly, only SPI‐6, and not PI‐9, was capable of inhibiting murine GrB, suggesting that a difference in enzymatic specificity exists between the mouse and the human granzymes. In agreement with this suggestion, murine GrB was clearly less effective in inducing apoptosis in human cells. Similar species specificity was also observed for SPI‐CI and GrM when either their capacity to associate or the effectiveness of GrM‐induced cytotoxicity was analysed. Our findings therefore indicate a species diversity that has a clear effect on mixed in vitro effector target settings.


Molecular Cancer | 2013

Regulation of stem cell self-renewal and differentiation by Wnt and Notch are conserved throughout the adenoma-carcinoma sequence in the colon

Cheryl Zimberlin; Michael Bots; Louis Vermeulen; Felipe de Sousa e Melo; Jan Paul Medema

BackgroundColon cancer stem cells are shown to be the self-renewing cells within a tumor that give rise to all lineages of more differentiated tumor cells. In this respect they are remarkably similar to their non-malignant counterparts that orchestrate the intestinal lining. This suggests that, despite the numerous genetic aberrations and morphological changes that have occurred during cancer initiation and progression, a remnant homeostatic regulation persists.FindingsUsing a number of human and mouse intestinal-derived organoid cultures from normal, adenoma and cancerous tissues, we show here that Notch signals coordinate self-renewal and lineage determination not only in normal, but also at the adenoma and carcinoma stage in both mice and humans. Moreover, the Wnt pathway, which carries activating mutations in virtually all colon cancers, is not as previously predicted constitutively active in adenomas and carcinomas, but still displays a heterogeneous activity pattern that determined stemness in all stages of disease.ConclusionThese data for the first time provide a comprehensive overview of Wnt and Notch-mediated signaling in the different stages of the adenoma-carcinoma sequence and demonstrates that these morphogenic pathways, despite mutations, remain crucial determinants of both architecture and hierarchy in normal and malignant intestinal tissue.


Molecular Cancer Therapeutics | 2013

Molecular and biologic analysis of histone deacetylase inhibitors with diverse specificities.

Andrea Newbold; Geoffrey M. Matthews; Michael Bots; Leonie A. Cluse; Christopher J. Clarke; Kellie M. Banks; Carleen Cullinane; Jessica E. Bolden; Ailsa J. Christiansen; Ross A. Dickins; Claudia Miccolo; Susanna Chiocca; Astrid M. Kral; Nicole Ozerova; Thomas A. Miller; Joey L. Methot; Victoria M. Richon; J. Paul Secrist; Saverio Minucci; Ricky W. Johnstone

Histone deacetylase inhibitors (HDACi) are anticancer agents that induce hyperacetylation of histones, resulting in chromatin remodeling and transcriptional changes. In addition, nonhistone proteins, such as the chaperone protein Hsp90, are functionally regulated through hyperacetylation mediated by HDACis. Histone acetylation is thought to be primarily regulated by HDACs 1, 2, and 3, whereas the acetylation of Hsp90 has been proposed to be specifically regulated through HDAC6. We compared the molecular and biologic effects induced by an HDACi with broad HDAC specificity (vorinostat) with agents that predominantly inhibited selected class I HDACs (MRLB-223 and romidepsin). MRLB-223, a potent inhibitor of HDACs 1 and 2, killed tumor cells using the same apoptotic pathways as the HDAC 1, 2, 3, 6, and 8 inhibitor vorinostat. However, vorinostat induced histone hyperacetylation and killed tumor cells more rapidly than MRLB-223 and had greater therapeutic efficacy in vivo. FDCP-1 cells dependent on the Hsp90 client protein Bcr-Abl for survival, were killed by all HDACis tested, concomitant with caspase-dependent degradation of Bcr-Abl. These studies provide evidence that inhibition of HDAC6 and degradation of Bcr-Abl following hyperacetylation of Hsp90 is likely not a major mechanism of action of HDACis as had been previously posited. Mol Cancer Ther; 12(12); 2709–21. ©2013 AACR.


Pediatric Research | 2008

Activation of the Granzyme Pathway in Children With Severe Respiratory Syncytial Virus Infection

Reinout A. Bem; Albert P. Bos; Michael Bots; Angela M. Wolbink; S. Marieke van Ham; Jan Paul Medema; Rene Lutter; Job B. M. van Woensel

Granzymes (Grs), serine proteases present in granules of effector lymphocytes, are involved in several host immune responses, including the activation of cell death and inflammatory pathways. The main goal of this study was to determine whether the local cell-mediated Gr pathway is activated during severe respiratory syncytial virus (RSV) lower respiratory tract illness (LRTI) in children. Tracheal aspirates (TA) from 23 children with RSV-LRTI and 12 controls without pulmonary disease were analyzed for Gr A and B. Bronchoalveolar lavage fluid samples from seven children with RSV-LRTI were analyzed for cellular expression of GrB. Levels of GrA and GrB in TA were significantly increased in RSV patients compared with controls and both Grs showed preserved activity. Gr levels correlated with the total leukocyte counts and IL-8 levels in the airways at several time points. However, no correlation between Gr levels and release of caspase-cleaved cytokeratin-18 was found. There was evidence for marked expression of GrB by both CD8+ and CD4+ T cells and natural killer cells in the respiratory tract. These findings suggest activation of the cell-mediated Gr pathway during severe RSV-LRTI in children.

Collaboration


Dive into the Michael Bots's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben P. Martin

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Andrea Newbold

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Carleen Cullinane

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Leonie A. Cluse

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kym Stanley

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Zuber

Research Institute of Molecular Pathology

View shared research outputs
Researchain Logo
Decentralizing Knowledge