Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Boyarsky is active.

Publication


Featured researches published by Michael Boyarsky.


Scientific Reports | 2017

Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale

Jonah N. Gollub; Okan Yurduseven; Kenneth P. Trofatter; Daniel Arnitz; Mohammadreza F. Imani; Timothy Sleasman; Michael Boyarsky; Alec Rose; Andreas Pedross-Engel; Hayrettin Odabasi; Tomas Zvolensky; Guy Lipworth; David J. Brady; Daniel L. Marks; Matthew S. Reynolds; David R. Smith

We demonstrate a low-profile holographic imaging system at millimeter wavelengths based on an aperture composed of frequency-diverse metasurfaces. Utilizing measurements of spatially-diverse field patterns, diffraction-limited images of human-sized subjects are reconstructed. The system is driven by a single microwave source swept over a band of frequencies (17.5–26.5 GHz) and switched between a collection of transmit and receive metasurface panels. High fidelity image reconstruction requires a precise model for each field pattern generated by the aperture, as well as the manner in which the field scatters from objects in the scene. This constraint makes scaling of computational imaging systems inherently challenging for electrically large, coherent apertures. To meet the demanding requirements, we introduce computational methods and calibration approaches that enable rapid and accurate imaging performance.


Journal of The Optical Society of America B-optical Physics | 2016

Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies

Timothy Sleasman; Michael Boyarsky; Mohammadreza F. Imani; Jonah N. Gollub; David R. Smith

We investigate the imaging capabilities of a one-dimensional, dynamic, metamaterial aperture that operates at the lower part of K-band microwave frequencies (17.5–21.1 GHz). The dynamic aperture consists of a microstrip transmission line with an array of radiating, complementary, subwavelength metamaterial irises patterned into the upper conductor. Diodes integrated into the metamaterial resonators provide voltage-controlled switching of the resonant metamaterial elements between radiating and nonradiating states. Applying a series of on/off patterns to the metamaterial resonators produces a series of distinct radiation patterns that sequentially illuminate a scene. The backscattered signal contains encoded scene information over a set of measurements that can be postprocessed to reconstruct an image. We present a series of design considerations for the dynamic aperture, as well as a series of experimental studies performed using a dynamic aperture prototype. High-fidelity, real-time, diffraction-limited imaging using the prototype is demonstrated. The dynamic aperture suggests a path to fast and reliable imaging with low-cost and versatile hardware, for a variety of applications including security screening, biomedical diagnostics, and through-wall imaging.


Journal of The Optical Society of America B-optical Physics | 2016

Application of range migration algorithms to imaging with a dynamic metasurface antenna

Laura Pulido-Mancera; Thomas Fromenteze; Timothy Sleasman; Michael Boyarsky; Mohammadreza F. Imani; Matthew S. Reynolds; David R. Smith

Dynamic metasurface antennas are planar structures that exhibit remarkable capabilities in controlling electromagnetic wavefronts, advantages that are particularly attractive for microwave imaging. These antennas exhibit strong frequency dispersion and produce rapidly varying radiation patterns. Such behavior presents unique challenges for integration with conventional imaging algorithms. We adapt the range migration algorithm (RMA) for use with dynamic metasurfaces and propose a preprocessing step that ultimately allows for expression of measurements in the spatial frequency domain, from which the fast Fourier transform can efficiently reconstruct the scene. Numerical studies illustrate imaging performance using conventional methods and the adapted RMA, demonstrating that the RMA can reconstruct images with comparable quality in a fraction of the time. The algorithm can be extended to a broad class of complex antennas for application in synthetic aperture radar and MIMO imaging.


Journal of The Optical Society of America A-optics Image Science and Vision | 2017

Synthetic aperture radar with dynamic metasurface antennas: a conceptual development

Michael Boyarsky; Timothy Sleasman; Laura Pulido-Mancera; Thomas Fromenteze; Andreas Pedross-Engel; Claire M. Watts; Mohammadreza F. Imani; Matthew S. Reynolds; David R. Smith

We investigate the application of dynamic metasurface antennas (DMAs) to synthetic aperture radar (SAR) systems. Metasurface antennas can generate a multitude of tailored electromagnetic waveforms from a physical platform that is low-cost, lightweight, and planar; these characteristics are not readily available with traditional SAR technologies, such as phased arrays and mechanically steered systems. We show that electronically tuned DMAs can generate steerable, directive beams for traditional stripmap and spotlight SAR imaging modes. This capability eliminates the need for mechanical gimbals and phase shifters, simplifying the hardware architecture of a SAR system. Additionally, we discuss alternative imaging modalities, including enhanced resolution stripmap and diverse pattern stripmap, which can achieve resolution on par with spotlight, while maintaining a large region-of-interest, as possible with stripmap. Further consideration is given to strategies for integrating metasurfaces with chirped pulse RF sources. DMAs are poised to propel SAR systems forward by offering a vast range of capabilities from a significantly improved physical platform.


Optics Express | 2017

Computational polarimetric microwave imaging

Thomas Fromenteze; Okan Yurduseven; Michael Boyarsky; Jonah N. Gollub; Daniel L. Marks; David R. Smith

We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target- often applied in microwave computational imaging schemes-is thus extended to retrieve the susceptibility tensors, and hence provides additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.


Journal of The Optical Society of America B-optical Physics | 2017

Single-frequency microwave imaging with dynamic metasurface apertures

Timothy Sleasman; Michael Boyarsky; Mohammadreza F. Imani; Thomas Fromenteze; Jonah N. Gollub; David R. Smith

Conventional microwave imaging schemes, enabled by the ubiquity of coherent sources and detectors, have traditionally relied on frequency bandwidth to retrieve range information, while using mechanical or electronic beamsteering to obtain cross-range information. This approach has resulted in complex and expensive hardware when extended to large-scale systems with ultrawide bandwidth. Relying on bandwidth can create difficulties in calibration, alignment, and imaging of dispersive objects. We present an alternative approach using electrically large, dynamically reconfigurable, metasurface antennas that generate spatially distinct radiation patterns as a function of tuning state. The metasurface antenna consists of a waveguide feeding an array of metamaterial radiators, each with properties that can be modified by applying a voltage to diodes integrated into the element. By deploying two of these apertures, one as the transmitter and one as the receiver, we realize sufficient spatial diversity to alleviate the dependence on frequency bandwidth and obtain range and cross-range information using measurements at a single frequency. We experimentally demonstrate this proposal by using two 1D dynamic metasurface apertures and reconstructing various 2D scenes (range and cross-range). Furthermore, we modify a conventional reconstruction method—the range migration algorithm—to be compatible with such configurations, resulting in an imaging system that is efficient in software and hardware. The imaging scheme presented in this paper has broad application to radio frequency imaging, including security screening, through-wall imaging, biomedical diagnostics, and synthetic aperture radar.


Proceedings of SPIE | 2017

Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna

Michael Boyarsky; Timothy Sleasman; Laura Pulido-Mancera; Mohammadreza F. Imani; Matthew S. Reynolds; David R. Smith

Synthetic aperture radar (SAR) systems conventionally rely on mechanically-actuated reflector dishes or large phased arrays for generating steerable directive beams. While these systems have yielded high-resolution images, the hardware suffers from considerable weight, high cost, substantial power consumption, and moving parts. Since these disadvantages are particularly relevant in airborne and spaceborne systems, a flat, lightweight, and low-cost solution is a sought-after goal. Dynamic metasurface antennas have emerged as a recent technology for generating waveforms with desired characteristics. Metasurface antennas consist of an electrically-large waveguide loaded with numerous subwavelength radiators which selectively leak energy from a guided wave into free space to form various radiation patterns. By tuning each radiating element, we can modulate the aperture’s overall radiation pattern to generate steered directive beams, without moving parts or phase shifters. Furthermore, by using established manufacturing methods, these apertures can be made to be lightweight, low-cost, and planar, while maintaining high performance. In addition to their hardware benefits, dynamic metasurfaces can leverage their dexterity and high switching speeds to enable alternative SAR modalities for improved performance. In this work, we briefly discuss how dynamic metasurfaces can conduct existing SAR modalities with similar performance as conventional systems from a significantly simpler hardware platform. We will also describe two additional modalities which may achieve improved performance as compared to traditional modalities. These modalities, enhanced resolution stripmap and diverse pattern stripmap, offer the ability to circumvent the trade-off between resolution and region-of-interest size that exists within stripmap and spotlight. Imaging results with a simulated dynamic metasurface verify the benefits of these modalities and a discussion of implementation considerations and noise effects is also included. Ultimately, the hardware gains coupled with the additional modalities well-suited to dynamic metasurface antennas has poised them to propel the SAR field forward and open the door to exciting opportunities.


Passive and Active Millimeter-Wave Imaging XXI | 2018

Aperture synthesis with a monochromatic metasurface imaging system for 3D near-field imaging

Michael Boyarsky; Timothy Sleasman; Laura Pulido-Mancera; Aaron V. Diebold; Mohammadreza F. Imani; David R. Smith

Microwave imaging systems have become increasingly prevalent owing to their ability to obtain 3D images while penetrating optically-opaque materials. These capabilities have motivated the development of various microwave imaging systems for applications ranging from security screening to biomedical imaging. Recent demonstrations have evidenced the idea that metasurface apertures can improve the hardware characteristics of microwave imaging systems due to their lightweight, low-cost, and planar nature. While metasurfaces can improve the antenna hardware, the large spectral bandwidth required for microwave imaging still incurs complex, costly, and performance-limiting RF components. To address the drawbacks inherent to using a large bandwidth, recent works have suggested that near-field microwave imaging can be performed at a single frequency point. In this work, monochromatic imaging is demonstrated by deploying two metasurface apertures to form a near-field microwave imaging system. By leveraging the unique radiation patterns emitted by metasurfaces, a pair of metasurface antennas, one acting as a transmitter and the other as a receiver, can acquire range and cross range information with measurements taken at a single frequency. We will show that this operation can then be supplemented by introducing aperture synthesis in the height direction to obtain fully 3D images. To account for the unusual illumination strategy, a reconstruction algorithm based on the range migration algorithm is formulated and implemented to enable efficient reconstruction of 3D images. Ultimately, the metasurface hardware, aperture synthesis, and monochromatic operation are combined to form an imaging system with high performance capabilities, without requiring complex and costly hardware.


Computational Imaging III | 2018

Near-field SAR imaging with dynamic metasurface antennas using an adapted range migration algorithm

Aaron V. Diebold; Laura Pulido-Mancera; Timothy Sleasman; Michael Boyarsky; Mohammadreza F. Imani; David R. Smith

Synthetic aperture radar (SAR) is a well-established approach for retrieving images with high resolution. How- ever, common hardware used for SAR systems is usually complex and costly, and can suffer from lengthy signal acquisition. In near-field imaging, such as through-wall-sensing and security screening, simpler and faster hardware can be found in the form of dynamic metasurface antennas (DMAs). These antennas consist of a waveguide-fed array of tunable metamaterial elements whose overall radiation patterns can be altered by DC signals. By sweeping through a set of tuning states, near-field imaging can be accomplished by multiplexing scene information into a collection of measurements, which are post-processed to retrieve scene information. While DMAs simplify hardware, the post-processing can become cumbersome, especially when DMAs are moving in a fashion similar to SAR. In this presentation, we address this problem by modifying the range migration algorithm (RMA) to be compatible with DMAs. To accommodate complex patterns generated by DMAs in the RMA, a pre-processing step is introduced to transform the measurements into an equivalent set corresponding to an effective multistatic configuration, for which specific forms of the algorithm have been derived. As we are operating in the near field of the antennas, some approximations made in the classical formulation of RMA may not be valid. In this paper, we examine the effect of one such approximation: the discarding of amplitude terms in the signal-target Fourier relationship. We demonstrate the adaptation of the RMA to near field imaging using a DMA as central hardware of a SAR system, and discuss the effects of this approximation on the resulting image quality.


Applied Optics | 2018

Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas

Michael Boyarsky; Timothy Sleasman; Laura Pulido-Mancera; Aaron V. Diebold; Mohammadreza F. Imani; David R. Smith

Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

Collaboration


Dive into the Michael Boyarsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge