Michael Bryant
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Bryant.
Journal of The Mechanical Behavior of Biomedical Materials | 2014
Michael Bryant; Michael B. Ward; R. Farrar; R. Freeman; K. Brummitt; John Nolan; Anne Neville
This study presents the characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FI-IR) were utilised in order to assess the surface morphology of retrieved Metal-on-Metal Total Hip Replacements and surface chemistry of the films found on the surface. Gross slip, plastic deformation and directionality of the surface were extensively seen on the proximal surfaces of the retrievals. A more corrosive phenomenon was observed in the distal regions of the stem, demonstrating a seemingly intergranular attack. Tribochemical reactions were seen to occur within the stem-cement interfaces with tribofilms being observed on the femoral stem and counterpart PMMA bone cement. XPS, TEM-EDX and FT-IR analyses demonstrated that the films present in the stem surfaces were a complex mixture of chromium oxide and amorphous organic material. A comparison between current experimental and clinical literature has been conducted and findings from this study demonstrate that the formation and chemistry of films are drastically influenced by the type of wear or degradation mechanism. Films formed in the stem-cement interface are thought to further influence the biological environment outside the stem-cement interface due to the formation of Cr and O rich films within the interface whilst Co is free to migrate away.
Journal of The Mechanical Behavior of Biomedical Materials | 2014
Michael Bryant; R. Farrar; R. Freeman; K. Brummitt; John Nolan; Anne Neville
The Ultima TPS MoM THR was designed and developed as a 2nd generation MoM THR specifically aimed at younger more active patients due to the anticipated low wear rates and increased longevity of MoM THRs. In 2010, published clinical data highlighted the early failure of the Ultima TPS MoM due to fretting-crevice corrosion at the stem-cement interface. Since 2010 similar observations have been reported by other clinical centres implicating competitor products as well as the Ultima TPS MoM THR. In an attempt to replicate the electrochemical reaction and interactions established across MoM THR systems, fretting-crevice corrosion tests subjected to galvanic coupling were conducted. Galvanic coupling was seen to significantly increase the rates of corrosion under static and dynamic conditions. This was due to the large potential differences developed across the system between active and passive areas, increasing the rates of corrosion and metallic ion release from the stem-cement interface.
Materials Science and Engineering: C | 2016
Maria Pettersson; Michael Bryant; Susann Schmidt; Håkan Engqvist; Richard M. Hall; Anne Neville; Cecilia Persson
In this study, the dissolution rate of SiNx coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiNx coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiNx coatings was evaluated to 0.2-1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7-1.2 nm/day). The highest nitrogen containing coating showed mainly Si-N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si-N and/or Si-Si bonds in the bulk and an increased formation of Si-O bonds at the surface as well as in the dissolution area. The SiNx coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiNx coatings for joint replacements.
Journal of Biomedical Materials Research Part B | 2013
Michael Bryant; Xinming Hu; R. Farrar; K. Brummitt; R. Freeman; Anne Neville
In this study, five commercially available poly(methyl methacrylate) PMMA bone cements were tested to investigate the effects of antibiotics on the severity of crevice corrosion. Bone cements with varying chemistry were also tested. A test method was developed in part reference to ASTM F746-04. Cylindrical specimens were fitted with a bone cement tapered collar, creating consistent crevice conditions. Crevice corrosion was then studied using potentiodynamic polarization techniques in 0.9% NaCl solution (pH7.4) at 37°C. Surface analyses using a light microscope and scanning electron microscopy were also conducted to investigate the surface morphology after accelerated electrochemical testing. Initial testing of commercially available bone cements indicated that different PMMA bone cements can affect the initiation and propagation mechanism of crevice corrosion. Further studies, utilising electrochemical and mass spectroscopy techniques, have identified that the addition of radiopaque agent and antibiotics affect the initiation mechanisms of 316L stainless steel, whilst significantly increasing the extent of propagation in CoCrMo alloys.
Acta Biomaterialia | 2016
Thiago A. Simoes; Michael Bryant; Andy Brown; Steven J. Milne; Mary P. Ryan; Anne Neville; Rik Brydson
We have characterized CoCrMo, Metal-on-Metal (MoM) implant, wear debris particles and their dissolution following cycling in a hip simulator, and have related the results to the tribocorrosion of synthetic wear debris produced by milling CoCrMo powders in solutions representative of environments in the human body. Importantly, we have employed a modified ICP-MS sample preparation procedure to measure the release of ions from CoCrMo alloys during wear simulation in different media; this involved use of nano-porous ultrafilters which allowed complete separation of particles from free ions and complexes in solution. As a result, we present a new perspective on the release of metal ions and formation of metal complexes from CoCrMo implants. The new methodology enables the mass balance of ions relative to complexes and particles during tribocorrosion in hip simulators to be determined. A much higher release of molybdenum ions relative to cobalt and chromium has been measured. The molybdenum dissolution was enhanced by the presence of bovine serum albumin (BSA), possibly due to the formation of metal-protein complexes. Overall, we believe that the results could have significant implications for the analysis and interpretation of metal ion levels in fluids extracted from hip arthroplasty patients; we suggest that metal levels, including molybdenum, be analysed in these fluids using the protocol described here. STATEMENT OF SIGNIFICANCE We have developed an important new protocol for the analysis of metal ion levels in fluids extracted from hip implant patients and also hip simulators. Using this procedure, we present a new perspective on the release of metal ions from CoCrMo alloy implants, revealing significantly lower levels of metal ion release during tribocorrosion in hip simulators than previously thought, combined with the release of much higher percentages of molybdenum ions relative to cobalt and chromium. This work is of relevance, both from the perspective of the fundamental science and study of metal-protein interactions, enabling understanding of the ongoing problem associated with the biotribocorrosion and the link to inflammation associated with Metal-on-Metal (MoM) hip implants made from CoCrMo alloys.
Food Research International | 2017
Laura Laguna; Anwesha Sarkar; Michael Bryant; Andrew R. Beadling; Begoña Bartolomé; M. Victoria Moreno-Arribas
Wine creates a group of oral-tactile stimulations not related to taste or aroma, such as astringency or fullness; better known as mouthfeel. During wine consumption, mouthfeel is affected by ethanol content, phenolic compounds and their interactions with the oral components. Mouthfeel arises through changes in the salivary film when wine is consumed. In order to understand the role of each wine component, eight different model wines with/without ethanol (8%), glycerol (10g/L) and commercial tannins (1g/L) were described using a trained panel. Descriptive analysis techniques were used to train the panel and measure the intensity of the mouthfeel attributes. Alongside, the suitability of different instrumental techniques (rheology, particle size, tribology and microstructure, using Transmission Electron Microscopy (TEM)) to measure wine mouthfeel sensation was investigated. Panelists discriminated samples based on their tactile-related components (ethanol, glycerol and tannins) at the levels found naturally in wine. Higher scores were found for all sensory attributes in the samples containing ethanol. Sensory astringency was associated mainly with the addition of tannins to the wine model and glycerol did not seem to play a discriminating role at the levels found in red wines. Visual viscosity was correlated with instrumental viscosity (R=0.815, p=0.014). Hydrodynamic diameter of saliva showed an increase in presence of tannins (almost 2.5-3-folds). However, presence of ethanol or glycerol decreased hydrodynamic diameter. These results were related with the sensory astringency and earthiness as well as with the formation of nano-complexes as observed by TEM. Rheologically, the most viscous samples were those containing glycerol or tannins. Tribology results showed that at a boundary lubrication regime, differences in traction coefficient lubrication were due by the presence of glycerol. However, no differences in traction coefficients were observed in presence/absence of tannins. It is therefore necessary to use an integrative approach that combines complementary instrumental techniques for mouthfeel perception characterization.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2016
Anne Neville; James Hesketh; Andrew R. Beadling; Michael Bryant; D. Dowson
Corrosion is not routinely considered in the assessment of the degradation or the lifetime of total hip replacement bearing surfaces. Biomechanical simulations are becoming ever more complex and are taking into account motion cycles that represent activities beyond a simple walking gait at 1 Hz, marking a departure from the standard ISO BS 14242. However, the degradation is still very often referred to as wear, even though the material loss occurs due to a combination of tribological and corrosion processes and their interactions. This article evaluates how, by incorporating real-time corrosion measurements in total hip replacement simulations, pre-clinical evaluations and research studies can both yield much more information and accelerate the process towards improved implants.
Tribology - Materials, Surfaces & Interfaces | 2017
Greg de Boer; Rob Hewson; Michael Bryant; D. Dowson
Abstract This paper explores the contact of soft elastic and poroelastic bodies rotating under load and inspects the differences in load carrying capacity between the two types of material. Both materials have been widely used to describe the behaviour of biological systems such as articular cartilage in mammalian joints, however, we demonstrate here that there are fundamental differences between the responses generated in which the poroelastic response has an additional fluid contribution to the solid structural response. In order to produce the same load carrying capacity it is shown that the poroelastic material must deform more than an incompressible soft elastic material with the same stiffness and that the solid load generated by a poroelastic material is the same as a soft elastic material with a zero Poisson’s ratio.
Tribology - Materials, Surfaces & Interfaces | 2018
Farnaz Motamen Salehi; Anne Neville; Michael Bryant
ABSTRACT Friction, shear forces and moisture between the human skin and textiles are important factors affecting skin injuries such as blisters, abrasions and decubitus ulcers. Whilst much research has been conducted to study the friction of skin-textile couples, the interactions between contact mechanics and incontinence management products are not well understood. This study addresses some tribological issues at the skin-textile interface using skin care products. It was observed that the use of skin care products and moisture can increase friction. This is due to changes in the mechanical properties of materials such as their compliance and the higher forces required to shear the interfaces in wet conditions. It was concluded that not only does the coefficient of friction vary, but also the mechanism of slip at the interface can be modified through the addition of medicated creams. This research highlights the importance of understanding the principles of contact mechanics of interfaces which can lead to significant improvement in incontinence management.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2018
Rachel Bingley; Alan Martin; Olivia Manfredi; Mahdiyar Nejadhamzeeigilani; Abimbola Oladokun; Andrew R. Beadling; Sohail Siddiqui; James Anderson; Jonathan Thompson; Anne Neville; Michael Bryant
Interest in the degradation mechanisms at the modular tapers interfaces has been renewed due to increased reported cases of adverse reactions to metal debris and the appearance of wear and corrosion at the modular tapers interfaces at revision. Over the past two decades, a lot of research has been expended to understand the degradation mechanisms, with two primary implant loading procedures and orientations used consistently across the literature. ASTM F1875-98 is often used as a guide to understand and benchmark the tribocorrosion processes occurring within the modular tapers interface. This article presents a comparison of the two methods outlined in ASTM F1875-98 as well as a critique of the standard considering the current paradigm in pre-clinical assessment of modular tapers.