Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Burkhardt is active.

Publication


Featured researches published by Michael Burkhardt.


Environmental Pollution | 2008

Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment

Ralf Kaegi; Andrea Ulrich; Brian Sinnet; Roger Vonbank; Adrian Wichser; S. Zuleeg; H. Simmler; S. Brunner; H. Vonmont; Michael Burkhardt; Markus Boller

We present direct evidence of the release of synthetic nanoparticles from urban applications into the aquatic environment. We investigated TiO(2) particles as these particles are used in large quantities in exterior paints as whitening pigments and are to some extent also present in the nano-size range. TiO(2) particles were traced from exterior facade paints to the discharge into surface waters. We used a centrifugation based sample preparation which recovers TiO(2) particles between roughly 20 and 300nm. Analytical electron microscopy revealed that TiO(2) particles are detached from new and aged facade paints by natural weather conditions and are then transported by facade runoff and are discharged into natural, receiving waters. Microscopic investigations are confirmed by bulk chemical analysis. By combining results from microscopic investigations with bulk chemical analysis we calculated the number densities of synthetic TiO(2) particles in the runoff.


Environmental Science & Technology | 2011

Behavior of Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plant

Ralf Kaegi; Andreas Voegelin; Brian Sinnet; S. Zuleeg; Harald Hagendorfer; Michael Burkhardt; Hansruedi Siegrist

We investigated the behavior of metallic silver nanoparticles (Ag-NP) in a pilot wastewater treatment plant (WWTP) fed with municipal wastewater. The treatment plant consisted of a nonaerated and an aerated tank and a secondary clarifier. The average hydraulic retention time including the secondary clarifier was 1 day and the sludge age was 14 days. Ag-NP were spiked into the nonaerated tank and samples were collected from the aerated tank and from the effluent. Ag concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) were in good agreement with predictions based on mass balance considerations. Transmission electron microscopy (TEM) analyses confirmed that nanoscale Ag particles were sorbed to wastewater biosolids, both in the sludge and in the effluent. Freely dispersed nanoscale Ag particles were only observed in the effluent during the initial pulse spike. X-ray absorption spectroscopy (XAS) measurements indicated that most Ag in the sludge and in the effluent was present as Ag(2)S. Results from batch experiments suggested that Ag-NP transformation to Ag(2)S occured in the nonaerated tank within less than 2 h. Physical and chemical transformations of Ag-NP in WWTPs control the fate, the transport and also the toxicity and the bioavailability of Ag-NP and therefore must be considered in future risk assessments.


Environmental Pollution | 2010

Release of silver nanoparticles from outdoor facades

Ralf Kaegi; Brian Sinnet; S. Zuleeg; Harald Hagendorfer; Elisabeth Mueller; Roger Vonbank; Markus Boller; Michael Burkhardt

In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 micro Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly <15 nm and are released as composite colloids attached to the organic binders of the paint. Microscopic results indicate that the Ag-NP are likely transformed to considerably less toxic forms such as Ag2S.


Environmental Science & Technology | 2012

Leaching of Biocides from Façades under Natural Weather Conditions

Michael Burkhardt; S. Zuleeg; Roger Vonbank; Kai Bester; Jan Carmeliet; Markus Boller; Timothy Wangler

Biocides are included in organic building façade coatings as protection against biological attack by algae and fungi but have the potential to enter the environment via leaching into runoff from wind driven rain. The following field study correlates wind driven rain to runoff and measured the release of several commonly used organic biocides (terbutryn, Irgarol 1051, diuron, isoproturon, OIT, DCOIT) in organic façade coatings from four coating systems. During one year of exposure of a west oriented model house façade in the Zurich, Switzerland area, an average of 62.7 L/m(2), or 6.3% of annual precipitation came off the four façade panels installed as runoff. The ISO method for calculating wind driven rain loads is adapted to predict runoff and can be used in the calculation of emissions in the field. Biocide concentrations tend to be higher in the early lifetime of the coatings and then reach fairly consistent levels later, generally ranging on the order of mg/L or hundreds of μg/L. On the basis of the amount remaining in the film after exposure, the occurrence of transformation products, and the calculated amounts in the leachate, degradation plays a significant role in the overall mass balance.


Water Research | 2016

Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment

Bing Wu; Florian Hochstrasser; Ebrahim Akhondi; Noëmi Ambauen; Lukas Tschirren; Michael Burkhardt; Anthony G. Fane; Wouter Pronk

Seawater pretreatment by gravity-driven membrane (GDM) filtration at 40 mbar has been investigated. In this system, a beneficial biofilm develops on the membrane that helps to stabilize flux. The effects of membrane type, prefiltration and system configuration on stable flux, biofilm layer properties and dissolved carbon removal were studied. The results show that the use of flat sheet PVDF membranes with pore sizes of 0.22 and 0.45 μm in GDM filtration achieved higher stabilized permeate fluxes (7.3-8.4 L/m(2)h) than that of flat sheet PES 100 kD membranes and hollow fibre PVDF 0.1 μm membranes. Pore constriction and cake filtration were identified as major membrane fouling mechanisms, but their relative contributions varied with filtration time for the various membranes. Compared to raw seawater, prefiltering of seawater with meshes at sizes of 10, 100 and 1000 μm decreased the permeate flux, which was attributed to removal of beneficial eukaryotic populations. Optical coherence tomography (OCT) showed that the porosity of the biofouling layer was more significantly related with permeate flux development rather than its thickness and roughness. To increase the contact time between the biofilm and the dissolved organics, a hybrid biofilm-submerged GDM reactor was evaluated, which displayed significantly higher permeate fluxes than the submerged GDM reactor. Although integrating the biofilm reactor with the membrane system displayed better permeate quality than the GDM filtration cells, it could not effectively reduce dissolved organic substances in the seawater. This may be attributed to the decomposition/degradation of solid organic substances in the feed and carbon fixation by the biofilm. Further studies of the dynamic carbon balance are required.


Science of The Total Environment | 2015

Transformation of AgCl nanoparticles in a sewer system — A field study ☆

Ralf Kaegi; Andreas Voegelin; Brian Sinnet; Steffen Zuleeg; Hansruedi Siegrist; Michael Burkhardt

Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 μg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%).


Frontiers in chemistry | 2014

Toward a comprehensive and realistic risk evaluation of engineered nanomaterials in the urban water system

Lars Duester; Michael Burkhardt; Arno C. Gutleb; Ralf Kaegi; Ailbhe Macken; Björn Meermann; Frank von der Kammer

The European COoperation in Science and Technology (COST) Action ES1205 on the transfer of Engineered Nano materials from wastewater Treatment and stormwatEr to Rivers (ENTER) aims to create and to maintain a trans European network among scientists. This perspective article delivers a brief overview on the status quo at the beginning of the project by addressing the following aspects on engineered nano materials (ENMs) in the urban systems: (1) ENMs that need to be considered on a European level; (2) uncertainties on production-volume estimations; (3) fate of selected ENMs during waste water transport and treatment; (4) analytical strategies for ENM analysis; (5) ecotoxicity of ENMs, and (6) future needs. These six step stones deliver the derivation of the position of the ES1205 network at the beginning of the projects runtime, by defining six fundamental aspects that should be considered in future discussions on risk evaluation of ENMs in urban water systems.


Journal of Environmental Quality | 2008

Simulating Sulfadimidine Transport in Surface Runoff and Soil at the Microplot and Field Scale

Mats Larsbo; Kathrin Fenner; Krispin Stoob; Michael Burkhardt; Karim C. Abbaspour; Christian Stamm

To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling.


Environmental Toxicology and Chemistry | 2018

Ecotoxicological Assessment of Immersion Samples from Facade Render Containing Free or Encapsulated Biocides

Etienne Vermeirssen; Sophie Campiche; Conrad Dietschweiler; Inge Werner; Michael Burkhardt

To protect house facades from fouling by microorganisms, biocides can be added to a render or paint before it is applied. During driving rain events, these biocides gradually leach out and have the potential to pollute soil or aquatic ecosystems. We studied the leaching behavior of biocides and toxicity of leachates from renders with either free or encapsulated biocides. Both render types contained equal amounts of terbutryn, 2-octyl-3(2H)-isothiazolinone (OIT), and 4,5-dichloro-2-n-octyl-4-isothiazolino-3-one (DCOIT). Nine leachate samples were generated over 9 immersion cycles according to a European standard, and biocides were quantified. The first and ninth leachate samples were tested using bioassays with algae, bacteria, and water fleas, the first sample was also tested with earthworms and springtails. Encapsulation reduced leaching of terbutryn, OIT, and DCOIT by 4-, 17-, and 27-fold. For aquatic organisms, the toxicity of water from render containing encapsulated biocides was always lower than that of render with free biocides. Furthermore, toxicity decreased by 4- to 5-fold over the 9 immersion cycles. Inhibition of photosynthesis was the most sensitive endpoint, followed by algal growth rate, bacterial bioluminescence, and water flea reproduction. Toxicity to algae was due to terbutryn and toxicity to bacteria was due to OIT. None of the samples affected soil organisms. Results demonstrate that combining standardized leaching tests with standardized bioassays is a promising approach to evaluate the ecotoxicity of biocides that leach from facade renders. Environ Toxicol Chem 2018;37:2246-2256.


Journal of Environmental Quality | 2005

Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland.

Michael Burkhardt; Christian Stamm; Christopher Kevin Waul; Heinz Singer; Stephan R. Müller

Collaboration


Dive into the Michael Burkhardt's collaboration.

Top Co-Authors

Avatar

Markus Boller

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

S. Zuleeg

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Brian Sinnet

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ralf Kaegi

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Roger Vonbank

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hansruedi Siegrist

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Stamm

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wouter Pronk

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony G. Fane

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge