Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael C. Coniglio is active.

Publication


Featured researches published by Michael C. Coniglio.


Monthly Weather Review | 2009

Next-Day Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing

Craig S. Schwartz; John S. Kain; Steven J. Weiss; Ming Xue; David R. Bright; Fanyou Kong; Kevin W. Thomas; Jason J. Levit; Michael C. Coniglio

Abstract During the 2007 NOAA Hazardous Weather Testbed (HWT) Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma produced convection-allowing forecasts from a single deterministic 2-km model and a 10-member 4-km-resolution ensemble. In this study, the 2-km deterministic output was compared with forecasts from the 4-km ensemble control member. Other than the difference in horizontal resolution, the two sets of forecasts featured identical Advanced Research Weather Research and Forecasting model (ARW-WRF) configurations, including vertical resolution, forecast domain, initial and lateral boundary conditions, and physical parameterizations. Therefore, forecast disparities were attributed solely to differences in horizontal grid spacing. This study is a follow-up to similar work that was based on results from the 2005 Spring Experiment. Unlike the 2005 experiment, however, model configurations were more rigorously controlled in the present study, providing...


Bulletin of the American Meteorological Society | 2004

The Bow Echo and MCV Experiment: Observations and Opportunities

Christopher A. Davis; Nolan T. Atkins; Diana L. Bartels; Lance F. Bosart; Michael C. Coniglio; George H. Bryan; William R. Cotton; David C. Dowell; Brian F. Jewett; Robert H. Johns; David P. Jorgensen; Jason C. Knievel; Kevin R. Knupp; Wen-Chau Lee; Gregory McFarquhar; James A. Moore; Ron W. Przybylinski; Robert M. Rauber; Bradley F. Smull; Robert J. Trapp; Stanley B. Trier; Roger M. Wakimoto; Morris L. Weisman; Conrad L. Ziegler

The Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) is a research investigation using highly mobile platforms to examine the life cycles of mesoscale convective systems. It represents a combination of two related investigations to study (a) bow echoes, principally those that produce damaging surface winds and last at least 4 h, and (b) larger convective systems that produce long-lived mesoscale convective vortices (MCVs). The field phase of BAMEX utilized three instrumented research aircraft and an array of mobile ground-based instruments. Two long-range turboprop aircraft were equipped with pseudo-dual-Doppler radar capability, the third aircraft was a jet equipped with dropsondes. The aircraft documented the environmental structure of mesoscale convective systems (MCSs), observed the kinematic and thermodynamic structure of the convective line and stratiform regions (where rear-inflow jets and MCVs reside), and captured the structure of mature MCVs. The ground-based instruments augmented sou...


Bulletin of the American Meteorological Society | 2012

An Overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment

Adam J. Clark; Steven J. Weiss; John S. Kain; Israel L. Jirak; Michael C. Coniglio; Christopher J. Melick; Christopher Siewert; Ryan A. Sobash; Patrick T. Marsh; Andrew R. Dean; Ming Xue; Fanyou Kong; Kevin W. Thomas; Yunheng Wang; Keith Brewster; Jidong Gao; Xuguang Wang; Jun Du; David R. Novak; Faye E. Barthold; Michael J. Bodner; Jason J. Levit; C. Bruce Entwistle; Tara Jensen; James Correia

The NOAA Hazardous Weather Testbed (HWT) conducts annual spring forecasting experiments organized by the Storm Prediction Center and National Severe Storms Laboratory to test and evaluate emerging scientific concepts and technologies for improved analysis and prediction of hazardous mesoscale weather. A primary goal is to accelerate the transfer of promising new scientific concepts and tools from research to operations through the use of intensive real-time experimental forecasting and evaluation activities conducted during the spring and early summer convective storm period. The 2010 NOAA/HWT Spring Forecasting Experiment (SE2010), conducted 17 May through 18 June, had a broad focus, with emphases on heavy rainfall and aviation weather, through collaboration with the Hydrometeorological Prediction Center (HPC) and the Aviation Weather Center (AWC), respectively. In addition, using the computing resources of the National Institute for Computational Sciences at the University of Tennessee, the Center for A...


Weather and Forecasting | 2010

Toward Improved Convection-Allowing Ensembles: Model Physics Sensitivities and Optimizing Probabilistic Guidance with Small Ensemble Membership

Craig S. Schwartz; John S. Kain; Steven J. Weiss; Ming Xue; David R. Bright; Fanyou Kong; Kevin W. Thomas; Jason J. Levit; Michael C. Coniglio; Matthew S. Wandishin

Abstract During the 2007 NOAA Hazardous Weather Testbed Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma produced a daily 10-member 4-km horizontal resolution ensemble forecast covering approximately three-fourths of the continental United States. Each member used the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model core, which was initialized at 2100 UTC, ran for 33 h, and resolved convection explicitly. Different initial condition (IC), lateral boundary condition (LBC), and physics perturbations were introduced in 4 of the 10 ensemble members, while the remaining 6 members used identical ICs and LBCs, differing only in terms of microphysics (MP) and planetary boundary layer (PBL) parameterizations. This study focuses on precipitation forecasts from the ensemble. The ensemble forecasts reveal WRF-ARW sensitivity to MP and PBL schemes. For example, over the 7-week experiment, the Mellor–Yamada–Janjic PBL and Ferrier M...


Journal of the Atmospheric Sciences | 2006

Effects of Upper-Level Shear on the Structure and Maintenance of Strong Quasi-Linear Mesoscale Convective Systems

Michael C. Coniglio; David J. Stensrud; Louis J. Wicker

Recent observational studies have shown that strong midlatitude mesoscale convective systems (MCSs) tend to decay as they move into environments with less instability and smaller deep-layer vertical wind shear. These observed shear profiles that contain significant upper-level shear are often different from the shear profiles considered to be the most favorable for the maintenance of strong, long-lived convective systems in some past idealized simulations. Thus, to explore the role of upper-level shear in strong MCS environments, a set of two-dimensional (2D) simulations of density currents within a dry, statically neutral environment is used to quantify the dependence of lifting along an idealized cold pool on the upper-level shear. A set of three-dimensional (3D) simulations of MCSs is produced to gauge the effects of the upper-level shear in a more realistic framework. Results from the 2D experiments show that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of parcels despite a decrease in the vertical velocity along the cold pool interface. Parcels that are elevated above the surface (1–2 km) overturn and are responsible for the deep lifting in the deep-shear environments, while the surface-based parcels typically are lifted through the cold pool region in a rearward-sloping path. This deep overturning helps to maintain the leading convection and greatly increases the size and total precipitation output of the convective systems in more complex 3D simulations, even in the presence of 3D structures. These results show that the shear profile throughout the entire troposphere must be considered to gain a more complete understanding of the structure and maintenance of strong midlatitude MCSs.


Weather and Forecasting | 2013

Verification of Convection-Allowing WRF Model Forecasts of the Planetary Boundary Layer Using Sounding Observations

Michael C. Coniglio; James Correia; Patrick T. Marsh; Fanyou Kong

AbstractThis study evaluates forecasts of thermodynamic variables from five convection-allowing configurations of the Weather Research and Forecasting Model (WRF) with the Advanced Research core (WRF-ARW). The forecasts vary only in their planetary boundary layer (PBL) scheme, including three “local” schemes [Mellor–Yamada–Janjic (MYJ), quasi-normal scale elimination (QNSE), and Mellor–Yamada–Nakanishi–Niino (MYNN)] and two schemes that include “nonlocal” mixing [the asymmetric cloud model version 2 (ACM2) and the Yonei University (YSU) scheme]. The forecasts are compared to springtime radiosonde observations upstream from deep convection to gain a better understanding of the thermodynamic characteristics of these PBL schemes in this regime. The morning PBLs are all too cool and dry despite having little bias in PBL depth (except for YSU). In the evening, the local schemes produce shallower PBLs that are often too shallow and too moist compared to nonlocal schemes. However, MYNN is nearly unbiased in PBL ...


Weather and Forecasting | 2004

An Observational Study of Derecho-Producing Convective Systems

Michael C. Coniglio; David J. Stensrud; Michael B. Richman

Abstract This study identifies the common large-scale environments associated with the development of derecho- producing convective systems (DCSs) from a large number of events. Patterns are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is identified as an additional warm-season pattern. Consequently, the environmental large-scale patterns idealized in past studies only depict a portion of the full spectrum of the possibilities associated with the development of DCSs. In addition, statistics of derecho proximity-sounding parameters are presented relative to the derecho life cycle as well as relative to the forcing for upward motion. It is found that the environments ahead of maturing derechos tend to moisten at low levels while remaining relatively dry aloft. In addition, derechos tend to deca...


Monthly Weather Review | 2011

Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble

Adam J. Clark; John S. Kain; David J. Stensrud; Ming Xue; Fanyou Kong; Michael C. Coniglio; Kevin W. Thomas; Yunheng Wang; Keith Brewster; Jidong Gao; Xuguang Wang; Steven J. Weiss; Jun Du

Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km. Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.


Monthly Weather Review | 2008

Surface Characteristics of Observed Cold Pools

Nicholas Engerer; David J. Stensrud; Michael C. Coniglio

Abstract Cold pools are a key element in the organization of precipitating convective systems, yet knowledge of their typical surface characteristics is largely anecdotal. To help to alleviate this situation, cold pools from 39 mesoscale convective system (MCS) events are sampled using Oklahoma Mesonet surface observations. In total, 1389 time series of surface observations are used to determine typical rises in surface pressure and decreases in temperature, potential temperature, and equivalent potential temperature associated with the cold pool, and the maximum wind speeds in the cold pool. The data are separated into one of four convective system life cycle stages: first storms, MCS initiation, mature MCS, and MCS dissipation. Results indicate that the mean surface pressure rises associated with cold pools increase from 3.2 hPa for the first storms’ life cycle stage to 4.5 hPa for the mature MCS stage before dropping to 3.3 hPa for the dissipation stage. In contrast, the mean temperature (potential tem...


Weather and Forecasting | 2010

Evaluation of WRF Model Output for Severe Weather Forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment

Michael C. Coniglio; Kimberly L. Elmore; John S. Kain; Steven J. Weiss; Ming Xue; Morris L. Weisman

Abstract This study assesses forecasts of the preconvective and near-storm environments from the convection-allowing models run for the 2008 National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) spring experiment. Evaluating the performance of convection-allowing models (CAMs) is important for encouraging their appropriate use and development for both research and operations. Systematic errors in the CAM forecasts included a cold bias in mean 2-m and 850-hPa temperatures over most of the United States and smaller than observed vertical wind shear and 850-hPa moisture over the high plains. The placement of airmass boundaries was similar in forecasts from the CAMs and the operational North American Mesoscale (NAM) model that provided the initial and boundary conditions. This correspondence contributed to similar characteristics for spatial and temporal mean error patterns. However, substantial errors were found in the CAM forecasts away from airmass boundaries. The result is...

Collaboration


Dive into the Michael C. Coniglio's collaboration.

Top Co-Authors

Avatar

John S. Kain

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

David J. Stensrud

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ming Xue

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Steven J. Weiss

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Fanyou Kong

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Adam J. Clark

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Israel L. Jirak

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Andrew R. Dean

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Conrad L. Ziegler

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge