Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam J. Clark is active.

Publication


Featured researches published by Adam J. Clark.


Bulletin of the American Meteorological Society | 2012

An Overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment

Adam J. Clark; Steven J. Weiss; John S. Kain; Israel L. Jirak; Michael C. Coniglio; Christopher J. Melick; Christopher Siewert; Ryan A. Sobash; Patrick T. Marsh; Andrew R. Dean; Ming Xue; Fanyou Kong; Kevin W. Thomas; Yunheng Wang; Keith Brewster; Jidong Gao; Xuguang Wang; Jun Du; David R. Novak; Faye E. Barthold; Michael J. Bodner; Jason J. Levit; C. Bruce Entwistle; Tara Jensen; James Correia

The NOAA Hazardous Weather Testbed (HWT) conducts annual spring forecasting experiments organized by the Storm Prediction Center and National Severe Storms Laboratory to test and evaluate emerging scientific concepts and technologies for improved analysis and prediction of hazardous mesoscale weather. A primary goal is to accelerate the transfer of promising new scientific concepts and tools from research to operations through the use of intensive real-time experimental forecasting and evaluation activities conducted during the spring and early summer convective storm period. The 2010 NOAA/HWT Spring Forecasting Experiment (SE2010), conducted 17 May through 18 June, had a broad focus, with emphases on heavy rainfall and aviation weather, through collaboration with the Hydrometeorological Prediction Center (HPC) and the Aviation Weather Center (AWC), respectively. In addition, using the computing resources of the National Institute for Computational Sciences at the University of Tennessee, the Center for A...


Monthly Weather Review | 2007

Comparison of the Diurnal Precipitation Cycle in Convection-Resolving and Non-Convection-Resolving Mesoscale Models

Adam J. Clark; William A. Gallus; Tsing-Chang Chen

Abstract The diurnal cycles of rainfall in 5-km grid-spacing convection-resolving and 22-km grid-spacing non-convection-resolving configurations of the Weather Research and Forecasting (WRF) model are compared to see if significant improvements can be obtained by using fine enough grid spacing to explicitly resolve convection. Diurnally averaged Hovmoller diagrams, spatial correlation coefficients computed in Hovmoller space, equitable threat scores (ETSs), and biases for forecasts conducted from 1 April to 25 July 2005 over a large portion of the central United States are used for the comparisons. A subjective comparison using Hovmoller diagrams of diurnally averaged rainfall show that the diurnal cycle representation in the 5-km configuration is clearly superior to that in the 22-km configuration during forecast hours 24–48. The superiority of the 5-km configuration is validated by much higher spatial correlation coefficients than in the 22-km configuration. During the first 24 forecast hours the 5-km m...


Monthly Weather Review | 2011

Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble

Adam J. Clark; John S. Kain; David J. Stensrud; Ming Xue; Fanyou Kong; Michael C. Coniglio; Kevin W. Thomas; Yunheng Wang; Keith Brewster; Jidong Gao; Xuguang Wang; Steven J. Weiss; Jun Du

Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km. Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.


Weather and Forecasting | 2010

Neighborhood-Based Verification of Precipitation Forecasts from Convection-Allowing NCAR WRF Model Simulations and the Operational NAM

Adam J. Clark; William A. Gallus; Morris L. Weisman

Since 2003 theNationalCenterfor Atmospheric Research(NCAR) has beenrunningvariousexperimental convection-allowing configurations of the Weather Research and Forecasting Model (WRF) for domains covering a large portion of the central United States during the warm season (April‐July). In this study, the skill of 3-hourly accumulated precipitation forecasts from a large sample of these convection-allowing simulations conducted during 2004‐05 and 2007‐08 is compared to that from operational North American Mesoscale (NAM) model forecasts using a neighborhood-based equitable threat score (ETS). Separate analyses were conducted for simulations run before and after the implementation in 2007 of positive-definite (PD) moisture transport for the NCAR-WRF simulations. The neighborhood-based ETS (denoted hETSir) relaxes the criteria for ‘‘hits’’ (i.e., correct forecasts) by considering grid points within a specified radius r .I t is shown that hETSiris more useful thanthe traditional ETS because hETSircan be usedto diagnosedifferences in precipitation forecast skill between different models as a function of spatial scale, whereas the traditional ETS only considers the spatial scale of the verification grid. It was found that differences in hETSir between NCAR-WRF and NAM generally increased with increasing r, with NCAR-WRF having higher scores. Examining time series of hETSir for r 5 100 and r 5 0 km (which simply reduces to the ‘‘traditional’’ ETS), statistically significant differences between NCAR-WRF and NAM were found at many forecast lead times for hETSi100 but only a few times for hETSi0. Larger and more statistically significant differences occurred with the 2007‐08 cases relative to the 2004‐05 cases. Because of differences in model configurations and dominantlarge-scaleweatherregimes,amorecontrolledexperimentwouldhavebeenneededtodiagnosethe reason for the larger differences that occurred with the 2007‐08 cases. Finally, a compositing technique was used to diagnose the differences in the spatial distribution of the forecasts. This technique implied westward displacement errors for NAM model forecasts in both sets of cases and in NCAR-WRF model forecasts for the 2007‐08 cases. Generally, the results are encouraging because they imply that advantages in convectionallowing relative to convection-parameterizing simulations noted in recent studies are reflected in an objective neighborhood-based metric.


Bulletin of the American Meteorological Society | 2013

A Feasibility Study for Probabilistic Convection Initiation Forecasts Based on Explicit Numerical Guidance

John S. Kain; Michael C. Coniglio; James Correia; Adam J. Clark; Patrick T. Marsh; Conrad L. Ziegler; Valliappa Lakshmanan; Stuart D. Miller; Scott R. Dembek; Steven J. Weiss; Fanyou Kong; Ming Xue; Ryan A. Sobash; Andrew R. Dean; Israel L. Jirak; Christopher J. Melick

Abstract The 2011 Spring Forecasting Experiment in the NOAA Hazardous Weather Testbed (HWT) featured a significant component on convection32 initiation (CI). As in previous HWT experiments, the CI study was a collaborative effort between forecasters and researchers, with 34 equal emphasis on experimental forecasting strategies and evaluation of prototype model guidance products. The overarching goal of the CI effort was to identify the primary challenges 36 of the CI-forecasting problem and establish a framework for additional studies and possible routine forecasting of CI. This study confirms that convection-allowing models with grid spacing ~ 4 km38 represent many aspects of the formation and development of deep convection clouds explicitly and with predictive utility. Further, it shows that automated algorithms can 40 skillfully identify the CI process during model integration. However, it also reveals that automated detection of individual convection cells, by itself, provides inadequate guidance for


Weather and Forecasting | 2009

Impact of the Intraseasonal Variability of the Western North Pacific Large-Scale Circulation on Tropical Cyclone Tracks

Tsing-Chang Chen; Shih-Yu Wang; Ming-Cheng Yen; Adam J. Clark

Abstract The life cycle of the Southeast Asian–western North Pacific monsoon circulation is established by the northward migrations of the monsoon trough and the western Pacific subtropical anticyclone, and is reflected by the intraseasonal variations of monsoon westerlies and trade easterlies in the form of an east–west seesaw oscillation. In this paper, an effort is made to disclose the influence of this monsoon circulation on tropical cyclone tracks during its different phases using composite charts of large-scale circulation for certain types of tracks. A majority of straight-moving (recurving) tropical cyclones appear during weak (strong) monsoon westerlies and strong (weak) trade easterlies. The monsoon conditions associated with straight-moving tropical cyclones are linked to the intensified subtropical anticyclone, while that associated with recurving tropical cyclones is coupled with the deepened monsoon trough. The relationship between genesis locations and track characteristics is evolved from ...


Weather and Forecasting | 2013

Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity

Adam J. Clark; Jidong Gao; Patrick T. Marsh; Travis M. Smith; John S. Kain; James Correia; Ming Xue; Fanyou Kong

AbstractExamining forecasts from the Storm Scale Ensemble Forecast (SSEF) system run by the Center for Analysis and Prediction of Storms for the 2010 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment, recent research diagnosed a strong relationship between the cumulative pathlengths of simulated rotating storms (measured using a three-dimensional object identification algorithm applied to forecast updraft helicity) and the cumulative pathlengths of tornadoes. This paper updates those results by including data from the 2011 SSEF system, and illustrates forecast examples from three major 2011 tornado outbreaks—16 and 27 April, and 24 May—as well as two forecast failure cases from June 2010. Finally, analysis updraft helicity (UH) from 27 April 2011 is computed using a three-dimensional variational data assimilation system to obtain 1.25-km grid-spacing analyses at 5-min intervals and compared to forecast UH from individual SSEF members.


Weather and Forecasting | 2012

Forecasting Tornado Pathlengths Using a Three-Dimensional Object Identification Algorithm Applied to Convection-Allowing Forecasts

Adam J. Clark; John S. Kain; Patrick T. Marsh; James Correia; Ming Xue; Fanyou Kong

AbstractA three-dimensional (in space and time) object identification algorithm is applied to high-resolution forecasts of hourly maximum updraft helicity (UH)—a diagnostic that identifies simulated rotating storms—with the goal of diagnosing the relationship between forecast UH objects and observed tornado pathlengths. UH objects are contiguous swaths of UH exceeding a specified threshold. Including time allows tracks to span multiple hours and entire life cycles of simulated rotating storms. The object algorithm is applied to 3 yr of 36-h forecasts initialized daily from a 4-km grid-spacing version of the Weather Research and Forecasting Model (WRF) run in real time at the National Severe Storms Laboratory (NSSL), and forecasts from the Storm Scale Ensemble Forecast (SSEF) system run by the Center for Analysis and Prediction of Storms for the 2010 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Methods for visualizing UH object attributes are presented, and the relationship between pathlen...


Monthly Weather Review | 2008

Contributions of Mixed Physics versus Perturbed Initial/Lateral Boundary Conditions to Ensemble-Based Precipitation Forecast Skill

Adam J. Clark; William A. Gallus; Tsing-Chang Chen

Abstract An experiment is described that is designed to examine the contributions of model, initial condition (IC), and lateral boundary condition (LBC) errors to the spread and skill of precipitation forecasts from two regional eight-member 15-km grid-spacing Weather Research and Forecasting (WRF) ensembles covering a 1575 km × 1800 km domain. It is widely recognized that a skillful ensemble [i.e., an ensemble with a probability distribution function (PDF) that generates forecast probabilities with high resolution and reliability] should account for both error sources. Previous work suggests that model errors make a larger contribution than IC and LBC errors to forecast uncertainty in the short range before synoptic-scale error growth becomes nonlinear. However, in a regional model with unperturbed LBCs, the infiltration of the lateral boundaries will negate increasing spread. To obtain a better understanding of the contributions to the forecast errors in precipitation and to examine the window of foreca...


Weather and Forecasting | 2010

Convection-Allowing and Convection-Parameterizing Ensemble Forecasts of a Mesoscale Convective Vortex and Associated Severe Weather Environment

Adam J. Clark; William A. Gallus; Ming Xue; Fanyou Kong

Abstract An analysis of a regional severe weather outbreak that was related to a mesoscale convective vortex (MCV) is performed. The MCV-spawning mesoscale convection system (MCS) formed in northwest Kansas along the southern periphery of a large cutoff 500-hPa low centered over western South Dakota. As the MCS propagated into eastern Kansas during the early morning of 1 June 2007, an MCV that became evident from multiple data sources [e.g., Weather Surveillance Radar-1988 Doppler (WSR-88D) network, visible satellite imagery, wind-profiler data, Rapid Update Cycle 1-hourly analyses] tracked through northwest Missouri and central Iowa and manifested itself as a well-defined midlevel short-wave trough. Downstream of the MCV in southeast Iowa and northwest Illinois, southwesterly 500-hPa winds increased to around 25 m s−1 over an area with southeasterly surface winds and 500–1500 J kg−1 of surface-based convective available potential energy (CAPE), creating a favorable environment for severe weather. In the ...

Collaboration


Dive into the Adam J. Clark's collaboration.

Top Co-Authors

Avatar

Fanyou Kong

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Ming Xue

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

John S. Kain

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Michael C. Coniglio

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Israel L. Jirak

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Steven J. Weiss

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge