Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael C. Jarvis is active.

Publication


Featured researches published by Michael C. Jarvis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Nanostructure of cellulose microfibrils in spruce wood

Anwesha N. Fernandes; Lynne H. Thomas; Clemens M. Altaner; P Callow; V T Forsyth; David C. Apperley; Craig J Kennedy; Michael C. Jarvis

The structure of cellulose microfibrils in wood is not known in detail, despite the abundance of cellulose in woody biomass and its importance for biology, energy, and engineering. The structure of the microfibrils of spruce wood cellulose was investigated using a range of spectroscopic methods coupled to small-angle neutron and wide-angle X-ray scattering. The scattering data were consistent with 24-chain microfibrils and favored a “rectangular” model with both hydrophobic and hydrophilic surfaces exposed. Disorder in chain packing and hydrogen bonding was shown to increase outwards from the microfibril center. The extent of disorder blurred the distinction between the I alpha and I beta allomorphs. Chains at the surface were distinct in conformation, with high levels of conformational disorder at C-6, less intramolecular hydrogen bonding and more outward-directed hydrogen bonding. Axial disorder could be explained in terms of twisting of the microfibrils, with implications for their biosynthesis.


Nature | 2003

Chemistry: Cellulose stacks up

Michael C. Jarvis

The long chains of cellulose pack laterally into microfibrils of two crystalline forms. Comparison of the structures of these two forms reveals unexpected patterns of bonding that tie the chains together.


Plant Physiology | 2013

Structure of cellulose microfibrils in primary cell walls from collenchyma.

Lynne H. Thomas; V. Trevor Forsyth; Adriana Šturcová; Craig J Kennedy; Roland P. May; Clemens M. Altaner; David C. Apperley; Timothy James Wess; Michael C. Jarvis

In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production.


Frontiers in Plant Science | 2012

Comparative structure and biomechanics of plant primary and secondary cell walls

Daniel Cosgrove Cosgrove; Michael C. Jarvis

Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current “cartoons” of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques.


Planta | 1982

The proportion of calcium-bound pectin in plant cell walls.

Michael C. Jarvis

The amount of pectin held in cell walls by ionic bonds only was determined by extraction with cyclohexanediamine tetraacetic acid (CDTA) at room temperature, to remove calcium ions without degrading the galacturonan chains. Enzymic degradation was avoided by extracting the cell walls with phenol-acetic acid-water during preparation. From cell walls of celery petioles, cress hypocotyls and tomato and cucumber pericarp CDTA extracted 64–100 mg g-1 pectin, leaving 80–167 mg g-1 uronic acid in the residue. An additional extraction at high ionic strength was used to make the galacturonan chains more flexible and thus detach any pectins held by steric interactions, but the amount released in this way was small. Most of the residual uronic acid polymers could be extracted by cold alkali and remained soluble on neutralisation, showing that it was not water-insolubility that prevented their extraction with CDTA. Covalent bonding was thought more likely.


Plant Physiology | 1997

Molecular Rigidity in Dry and Hydrated Onion Cell Walls

Marie-Ann Ha; David C. Apperley; Michael C. Jarvis

Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.


Plant Physiology and Biochemistry | 2000

Macromolecular biophysics of the plant cell wall: Concepts and methodology

Michael C. Jarvis; Maureen C. McCann

Plant cell walls provide form and mechanical strength to the living plant, but the relationship between their complex architecture and their remarkable ability to withstand external stress is not well understood. Primary cell walls are adapted to withstand tensile stresses while secondary cell walls also need to withstand compressive stresses. Therefore, while primary cell walls can with advantage be flexible and elastic, secondary cell walls must be rigid to avoid buckling under compressive loads. In addition, primary cell walls must be capable of growth and are subjected to cell separation forces at the cell corners. To understand how these stresses are resisted by cell walls, it will be necessary to find out how the walls deform internally under load, and how rigid are specific constituents of each type of cell wall. The most promising spectroscopic techniques for this purpose are solid-state nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) and Raman microscopy. By NMR relaxation experiments, it is possible to probe thermal motion in each cell-wall component. Novel adaptations of FTIR and Raman spectroscopy promise to allow mechanical stress and strain upon specific polymers to be examined in situ within the cell wall.


Planta | 2001

Developmental regulation of pectic epitopes during potato tuberisation

Maxwell S. Bush; Mazz Marry; Max I. Huxham; Michael C. Jarvis; Maureen C. McCann

Abstract. We show, by immunogold labelling, that potato (Solanum tuberosum L. cv Karnico) pectic epitopes are developmentally regulated within regions of the stolon, in addition to showing tissue-specific differences in abundance and localisation. The (1→4)-β-D-galactan and (1→5)-α-arabinan epitopes demarcate two distinct zones within stolons; galactans are enriched in primary walls of elongating cells proximal to the stolon hook, whilst arabinans predominate in younger cells distal to the hook. Low-methoxyl homogalacturonan epitopes are concentrated in the middle lamella and show a proximo-distal gradient in stolons similar to that of galactans, whilst high-methoxyl homogalacturonan is uniformly abundant. Calcium pectate is restricted to the middle lamella at cell corners and pit fields. Calcium-binding sites are uniformly present in stolon cell walls, but their total density is reduced and they become localised to a few cell corners in mature tubers, as determined by image-electron energy loss spectroscopy. During the transition from elongation growth to isodiametric expansion during tuberisation of the stolon hook, there were no detectable changes in pectic epitope abundance or localisation. As tubers matured, all epitopes increased in abundance in parenchymal cell walls, except for calcium pectate. We conclude that potentially significant changes in pectic composition occur as young cells distal to the stolon hook move into the zone of cell elongation proximal to the hook.


Green Chemistry | 2015

Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure

Florent P. Bouxin; Ashley McVeigh; Fanny Tran; Nicholas J. Westwood; Michael C. Jarvis; S. David Jackson

Four lignin preparations with different contents of alkyl–aryl ether bonds were depolymerised using an alumina supported platinum catalyst. The results showed that the proportion of β-O-4 linkages is the crucial factor for both the yield and the nature of the monomeric products. Highly condensed lignin generated mainly non-alkylated phenolic products while uncondensed lignin generated mainly phenolic products retaining the 3-carbon side-chain. These phenolic products with the 3-carbon chain still attached were considerably less abundant than the maximum potential yield calculated from selective cleavage of alkyl–aryl ether bonds by thioacidolysis, demonstrating that the scope for improved yield remains. Although the catalytic conversion yield rose with an increasing content of labile ether linkages in the lignin structure, optimisation of the catalytic depolymerisation was increasingly required to minimize side reactions. Gel permeation chromatography showed that the products converged towards the same molecular weight distribution regardless of the starting material. The full potential of the highly uncondensed lignin was reached only after the minimisation of condensation reactions during the catalytic conversion.


Phytochemistry | 1979

Hydrolysis of plant polysaccharides and GLC analysis of their constituent neutral sugars

Anwar T. Mankarios; Christopher G. Jones; Michael C. Jarvis; David R. Threfall; John Friend

Abstract The release and degradation of sugars from onion cell walls and potato cell wall polysaccharides were followed during hydrolysis with trifluoroacetic acid so that the optimum hydrolysis conditions could be determined. After 6 hr hydrolysis in 2 M acid at 100°, calculated recovery factors of different monosaccharides from potato pectic fractions ranged from 61 to 96%. Lower yields of monosaccharides were obtained from intact onion cell walls, while the yield from cellulose was less than 0.2%. A new GLC column for the separation of alditol acetates derived from cell wall sugars is described.

Collaboration


Dive into the Michael C. Jarvis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Šturcová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wieland Fricke

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge