Michael C. P. Wang
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael C. P. Wang.
Materials Today | 2009
Michael C. P. Wang; Byron D. Gates
Nanowires of a diverse range of compositions with tailored physical properties can be produced through synthetic means. These structures have been used as key components in flexible electronics, electronic logic gates, renewable energy technologies, and biological or gas sensing applications. Integrating these nanostructures into device or technology platforms will complement existing nanofabrication procedures by broadening the types of nanostructured materials that are utilized in device fabrication. This integration requires an ability to assemble these nanowires as controllable building blocks. Techniques are being developed that can quickly manipulate large quantities of nanowires through parallel processes.
ACS Applied Materials & Interfaces | 2013
Julia van Drunen; Brandy Kinkead; Michael C. P. Wang; Erwan Sourty; Byron D. Gates; Gregory Jerkiewicz
Nickel-based metallic foams are commonly used in electrochemical energy storage devices (rechargeable batteries) as both current collectors and active mass support. These materials attract attention as tunable electrode materials because they are available in a range of chemical compositions, pore structures, pore sizes, and densities. This contribution presents structural, chemical, and electrochemical characterization of Ni-based metallic foams. Several materials and surface science techniques (transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), focused ion beam (FIB), and X-ray photoelectron spectroscopy (XPS)) and electrochemical methods (cyclic voltammetry (CV)) are used to examine the micro-, meso-, and nanoscopic structural characteristics, surface morphology, and surface-chemical composition of these materials. XPS combined with Ar-ion etching is employed to analyze the surface and near-surface chemical composition of the foams. The specific and electrochemically active surface areas (As, Aecsa) are determined using CV. Though the foams exhibit structural robustness typical of bulk materials, they have large As, in the range of 200-600 cm(2) g(-1). In addition, they are dual-porosity materials and possess both macro- and mesopores.
ACS Nano | 2010
Michael C. P. Wang; Xin Zhang; Elham Majidi; Kevin Nedelec; Byron D. Gates
Solution-phase synthesized nanowires with high aspect ratios can be a challenge to assemble into desired structures. As synthesized, these nanostructures readily bend and entangle with each other to form larger aggregates. This manuscript reports a general procedure for directing the assembly of semiconducting and metallic nanowires into fibers that can easily span distances >1 cm. Dispersions of these nanostructures in a low dielectric solution are organized by electrokinetic techniques into fibers that can be isolated from solution. Theoretical studies suggest that the assembled fibers adopt an orientation along electric field lines in the solution. The number of assembled fibers is a function of the duration of the assembly process, the magnitude of the electric potential, and the initial concentration of nanowires dispersed in solution. These findings offer a general method for the assembly of nanowires into macroscopic fibers of tunable dimensions. Fibers of selenium nanowires isolated from solution can reversibly bend in response to a source of electrostatic charges positioned in close proximity to the free-standing fiber. These flexible selenium fibers also exhibit a photoconductive response when illuminated with white light.
Langmuir | 2010
Saman Harirchian-Saei; Michael C. P. Wang; Byron D. Gates; Matthew G. Moffitt
We demonstrate a new strategy for producing hierarchical polymer nanostructures, which combines nanoscale self-assembly of amphiphilic block copolymers at the air-water interface with microscale templated assembly of the resulting aggregates on chemically patterned substrates. Aggregates are formed via interfacial self-assembly of 141k polystyrene-b-poly(ethylene oxide) (PS-b-PEO, MW = 141k, 11.4 wt % PEO) or a blend of 185k PS-b-PEO (MW = 185k, 18.9 wt % PEO) and PS-coated CdS nanoparticles to form strandlike copolymer or copolymer-nanoparticle aggregates. Using Langmuir-Blodgett (LB) techniques, the aggregates are then transferred to patterned substrates possessing alternating hydrophilic/hydrophobic stripes, obtained by microcontact printing octadecyltrichlorosilane (OTS) on glass. The aggregates are transferred under various conditions of surface pressure, orientation of the patterned substrate, and withdrawal speed. Templated assembly of aggregates into the hydrophilic substrate domains is achieved when the hydrophilic/hydrophobic stripes are oriented perpendicular to the water surface during LB transfer; this is explained by surface energy heterogeneities along the subphase-substrate contact line, which induce selective dewetting and concomitant monolayer rearrangement at the drying front. In contrast, parallel orientation of stripes results in nonselective transfer of the monolayer without registration to the underlying surface pattern. By studying the effect of surface pressure, we show that packing constraints imposed by compression of aggregates to high surface densities prevent the formation of patterned LB films that match the established periodicity of the OTS-patterned glass. As well, it is shown that efficient transfer of aggregates to the patterned glass requires slower substrate withdrawal speeds compared to transfer to unpatterned hydrophilic glass.
Analytical Chemistry | 2013
Idah C. Pekcevik; Lester Poon; Michael C. P. Wang; Byron D. Gates
A quantitative and tunable loading of single-stranded (ss-DNA) molecules onto gold nanorods was achieved through a new method of surfactant exchange. This new method involves the exchange of cetyltrimethylammonium bromide surfactants for an intermediate stabilizing layer of polyvinylpyrrolidone and sodium dodecylsulfate. The intermediate layer of surfactants on the anisotropic gold particles was easily displaced by thiolated ss-DNA, forming a tunable density of single-stranded DNA molecules on the surfaces of the gold nanorods. The success of this ligand exchange process was monitored in part through the combination of extinction, X-ray photoelectron, and infrared absorption spectroscopies. The number of ss-DNA molecules per nanorod for nanorods with a high density of ss-DNA molecules was quantified through a combination of fluorescence measurements and elemental analysis, and the functionality of the nanorods capped with dense monolayers of DNA was assessed using a hybridization assay. Core-satellite assemblies were successfully prepared from spherical particles containing a probe DNA molecule and a nanorod core capped with complementary ss-DNA molecules. The methods demonstrated herein for quantitatively fine tuning and maximizing, or otherwise optimizing, the loading of ss-DNA in monolayers on gold nanorods could be a useful methodology for decorating gold nanoparticles with multiple types of biofunctional molecules.
Langmuir | 2012
Yuanyuan Gong; Michael C. P. Wang; Xin Zhang; Him Wai Ng; Byron D. Gates
Self-assembled monolayers (or SAMs) created from monoreactive perfluoroalkylsilanes by deposition from a toluene solution are investigated for the dependence of their quality on processing conditions. Surface-sensitive spectroscopic techniques are used to provide feedback on the processing conditions in which solution temperature, silane concentration, and reaction time are optimized to improve the quality of these SAMs. For these analyses, monolayers are formed at 20, 40, 60, or 80 °C from solutions containing between 0.5 and 5 mM perfluoroalkylsilane over a period of up to 5 h. Physically adsorbed molecules are removed from these surfaces by extraction to determine the quality of the covalently bound monolayer. Water contact angle measurements, spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), respectively, are used in combination to assess the uniformity of the surface hydrophobicity, monolayer thickness, composition of the assembled perfluoroalkylsilane molecules, and topography of these monolayers. A comparison is also presented for two approaches to fill defects within these solvent extracted monolayers with more perfluoroalkylsilane molecules, aiming to improve the quality of these SAMs. A detailed XPS analysis is used to assess both the relative changes in density and average tilt of molecules within the monolayers as the process temperature is increased in increments from 20 to 80 °C. The observed differences in quality of the SAMs are attributed to temperature- and time-dependent organization and reactivity of the silane molecules. Although the assembly of these monoreactive perfluoroalkylsilanes is driven by thermodynamics, the quality of the monolayer is ultimately limited by the kinetics and mass transport during this assembly process. Lessons from these studies can be exploited for improving the quality of monolayers composed of other alkylsilane molecules that are covalently bound to the surfaces of oxides.
ACS Applied Materials & Interfaces | 2013
Michael C. P. Wang; Byron D. Gates
This Article reports the first preparation of cuprous and cupric selenide nanowires coated with a ∼5 nm thick sheath of polystyrene (copper selenide@polystyrene). These hybrid nanostructures are prepared by the transformation of selenium nanowires in a one-pot reaction, which is performed under ambient conditions. The composition, purity, and crystallinity of the copper selenide@polystyrene products were assessed by scanning transmission electron microscopy, electron energy-loss spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy techniques. We determined that the single crystalline selenium nanowires are converted into polycrystalline copper selenide@polystyrene nanowires containing both cuprous selenide and cupric selenide. The product is purified through the selective removal of residual, non-transformed selenium nanowires by performing thermal evaporation below the decomposition temperature of these copper selenides. Powder X-ray diffraction of the purified copper selenide nanowires@polystyrene identified the presence of hexagonal, cubic, and orthorhombic phases of copper selenide. These purified cuprous and cupric selenide@polystyrene nanowires have an indirect bandgap of 1.44 eV, as determined by UV-vis absorption spectroscopy. This new synthesis of polymer-encapsulated nanoscale materials may provide a method for preparing other complex hybrid nanostructures.
Langmuir | 2012
Saman Harirchian-Saei; Michael C. P. Wang; Byron D. Gates; Matthew G. Moffitt
We investigate the surface-directed phase separation of spin-coated polystyrene/poly(methyl methacrylate) (PS/PMMA) blends on prepatterned octadecyltrichlorosilane (OTS)-glass substrates under various experimental conditions. As a result of tandem processes of spinodal decomposition and selective wetting of polymer components during spin-coating, low-energy OTS stripes and high-energy glass surfaces laterally arrange the phase-separated polymers according to the chemical pattern on the substrate. Optimal pattern replication was achieved when the length scale of phase separation, controlled via the polymer concentration of the spin-coating solution, matched the smallest feature dimension in a striped chemical pattern possessing two alternating distances between stripes. It was also shown that polymer blend patterns were most closely registered with the underlying substrate when the PS/PMMA composition ratio (30/70, w/w) matched the areal fraction of OTS on the glass surface (∼30%). The influence of solvents demonstrated that a solvent with a relatively low volatility, such toluene, was required for patterning so that domain feature sizes were able to coarsen to the size of the patterned features before film vitrification. As well, we showed that the technique and optimized conditions developed in this study could be applied to pattern photoluminescent CdS quantum dots into microscale arrays of parallel lines via spin-coating onto transparent OTS-glass substrates.
Nanotechnology | 2015
Brandy K. Pilapil; Michael C. P. Wang; Michael T.Y. Paul; Amir Nazemi; Byron D. Gates
Functional colloidal materials were prepared by design through the self-assembly of nanoparticles (NPs) on the surfaces of polystyrene (PS) spheres with control over NP surface coverage, NP-to-NP spacing, and NP composition. The ability to control and fine tune the coating was extended to the first demonstration of the co-assembly of NPs of dissimilar composition onto the same PS sphere, forming a multi-component coating. A broad range of NP decorated PS (PS@NPs) spheres were prepared with uniform coatings attributed to electrostatic and hydrogen bonding interactions between stabilizing groups on the NPs and the functionalized surfaces of the PS spheres. This versatile two-step method provides more fine control than methods previously demonstrated in the literature. These decorated PS spheres are of interest for a number of applications, such as catalytic reactions where the PS spheres provide a support for the dispersion, stabilization, and recovery of NP catalysts. The catalytic properties of these PS@NPs spheres were assessed by studying the catalytic degradation of azo dyes, an environmental contaminant detrimental to eye health. The PS@NPs spheres were used in multiple, sequential catalytic reactions while largely retaining the NP coating.
Journal of Colloid and Interface Science | 2014
Saman Harirchian-Saei; Michael C. P. Wang; Byron D. Gates; Matthew G. Moffitt
A fast and convenient method is developed for simultaneously patterning inorganic nanoparticles with different optical, electronic or magnetic functionality to specific surface regions, by spin-casting onto microcontact printed substrates blend solutions in which the two nanoparticle types are functionalized with surface polymer brush layers of different surface energies. The process is based on phase separation of different nanoparticles based on their immiscible brush layers during spin-casting, with the underlying surface energy heterogeneity of the patterned substrate directing the different NP types to domains of different surface energies. Here, we specifically demonstrate the simultaneous localization of cadmium sulfide quantum dots (CdS QDs), addressed with a surface layer of polystyrene (PS), and silver nanoparticles (Ag NPs), addressed with a surface layer of poly(methyl methacrylate) (PMMA), onto the non-polar and polar surface domains, respectively, of hydrophilic glass patterned with hydrophobic octadecyltrichlorosilane (OTS) stripe arrays with micron-scale periodicities. In order to prevent gelation of solvent-swollen polymer-brush coated NPs during spin casting, which effects strong kinetic constraints on phase separation and localization, PS, PMMA or PS/PMMA homopolymer blends of sufficiently high Mw were added to the NP blends to increase the free volume between approaching NPs. The process parameters were fine-tuned to obtain control over defects in the obtained patterns.