Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Clare-Salzler is active.

Publication


Featured researches published by Michael Clare-Salzler.


Journal of Experimental Medicine | 2007

MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

Matthew J. Delano; Philip O. Scumpia; Jason S. Weinstein; Dominique Coco; Srinivas Nagaraj; Kindra M. Kelly-Scumpia; Kerri O'Malley; James L. Wynn; Svetlana Antonenko; Samer Z. Al-Quran; Ryan Swan; Chun-Shiang Chung; Mark A. Atkinson; Reuben Ramphal; Dmitry I. Gabrilovich; Wesley H. Reeves; Alfred Ayala; Joseph S. Phillips; Drake LaFace; Paul G. Heyworth; Michael Clare-Salzler; Lyle L. Moldawer

Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization.


Journal of Clinical Investigation | 1992

Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus.

Daniel L. Kaufman; M.G Erlander; Michael Clare-Salzler; Mark A. Atkinson; N K Maclaren; Allan J. Tobin

Insulin-dependent diabetes mellitus (IDDM) is thought to result from the autoimmune destruction of the insulin-producing beta cells of the pancreas. Years before IDDM symptoms appear, we can detect autoantibodies to one or both forms of glutamate decarboxylase (GAD65 and GAD67), synthesized from their respective cDNAs in a bacterial expression system. Individual IDDM sera show distinctive profiles of epitope recognition, suggesting different humoral immune responses. Although the level of GAD autoantibodies generally decline after IDDM onset, patients with IDDM-associated neuropathies have high levels of antibodies to GAD, years after the appearance of clinical IDDM. We note a striking sequence similarity between the two GADs and Coxsackievirus, a virus that has been associated with IDDM both in humans and in experimental animals. This similarity suggests that molecular mimicry may play a role in the pathogenesis of IDDM.


Diabetes | 2007

No Alterations in the Frequency of FOXP3+ Regulatory T-Cells in Type 1 Diabetes

Todd M. Brusko; Clive Wasserfall; Kieran McGrail; Richard Schatz; Hilla Lee Viener; Desmond A. Schatz; Michael J. Haller; Jennifer Rockell; Peter A. Gottlieb; Michael Clare-Salzler; Mark A. Atkinson

Regulatory T-cells (Tregs) play a critical role in maintaining dominant peripheral tolerance. Previous characterizations of Tregs in type 1 diabetes have used antibodies against CD4 and α-chain of the interleukin-2 receptor complex (CD25). This report extends those investigations by the addition of a more lineage-specific marker for Tregs, transcription factor forkhead box P3 (FOXP3), in subjects with type 1 diabetes, their first-degree relatives, and healthy control subjects. With inclusion of this marker, two predominant populations of CD4+CD25+ T-cells were identified: CD4+CD25+FOXP3+ as well as CD4+FOXP3− T-cells expressing low levels of CD25 (CD4+CD25LOWFOXP3−). In all study groups, the frequency of CD4+CD25+FOXP3+ cells was age independent, whereas CD4+CD25LOWFOXP3− cell frequencies strongly associated with age. In terms of additional markers for delineating cells of Treg lineage, FOXP3+ cells were CD127− to CD127LOW whereas CD25+ cells were less restricted in their expression of this marker, with CD127 expressed across a continuum of levels. Importantly, no differences were observed in the frequency of CD4+CD25+FOXP3+ T-cells in individuals with or at varying degrees of risk for type 1 diabetes. These investigations suggest that altered peripheral blood frequencies of Tregs, as defined by the expression of FOXP3, are not specifically associated with type 1 diabetes and continue to highlight age as an important variable in analysis of immune regulation.


Journal of Immunology | 2003

Systemic Overexpression of IL-10 Induces CD4+CD25+ Cell Populations In Vivo and Ameliorates Type 1 Diabetes in Nonobese Diabetic Mice in a Dose-Dependent Fashion

Kevin Goudy; Brant R. Burkhardt; Clive Wasserfall; Sihong Song; Martha Campbell-Thompson; Todd M. Brusko; Matthew Powers; Michael Clare-Salzler; Eric S. Sobel; Tamir M. Ellis; Terence R. Flotte; Mark A. Atkinson

Early systemic treatment of nonobese diabetic mice with high doses of recombinant adeno-associated virus (rAAV) vector expressing murine IL-10 prevents type 1 diabetes. To determine the therapeutic parameters and immunological mechanisms underlying this observation, female nonobese diabetic mice at 4, 8, and 12 wk of age were given a single i.m. injection of rAAV-murine IL-10 (104, 106, 108, and 109 infectious units (IU)), rAAV-vector expressing truncated murine IL-10 fragment (109 IU), or saline. Transduction with rAAV-IL-10 at 109 IU completely prevented diabetes in all animals injected at all time points, including, surprisingly, 12-wk-old animals. Treatment with 108 IU provided no protection in the 12-wk-old injected mice, partial prevention in 8-wk-old mice, and full protection in all animals injected at 4 wk of age. All other treatment groups developed diabetes at a similar rate. The rAAV-IL-10 therapy attenuated pancreatic insulitis, decreased MHC II expression on CD11b+ cells, increased the population of CD11b+ cells, and modulated insulin autoantibody production. Interestingly, rAAV-IL-10 therapy dramatically increased the percentage of CD4+CD25+ regulatory T cells. Adoptive transfer studies suggest that rAAV-IL-10 treatment alters the capacity of splenocytes to impart type 1 diabetes in recipient animals. This study indicates the potential for immunomodulatory gene therapy to prevent autoimmune diseases, including type 1 diabetes, and implicates IL-10 as a molecule capable of increasing the percentages of regulatory cells in vivo.


Journal of Immunology | 2004

Characterization of the Systemic Loss of Dendritic Cells in Murine Lymph Nodes During Polymicrobial Sepsis

Philip A. Efron; Antonio Martins; Douglas J. Minnich; Kevin W. Tinsley; Ricardo Ungaro; Frances R. Bahjat; Richard S. Hotchkiss; Michael Clare-Salzler; Lyle L. Moldawer

Dendritic cells (DCs) play a key role in critical illness and are depleted in spleens from septic patients and mice. To date, few studies have characterized the systemic effect of sepsis on DC populations in lymphoid tissues. We analyzed the phenotype of DCs and Th cells present in the local (mesenteric) and distant (inguinal and popliteal) lymph nodes of mice with induced polymicrobial sepsis (cecal ligation and puncture). Flow cytometry and immunohistochemical staining demonstrated that there was a significant local (mesenteric nodes) and partial systemic (inguinal, but not popliteal nodes) loss of DCs from lymph nodes in septic mice, and that this process was associated with increased apoptosis. This sepsis-induced loss of DCs occurred after CD3+CD4+ T cell activation and loss in the lymph nodes, and the loss of DCs was not preceded by any sustained increase in their maturation status. In addition, there was no preferential loss of either mature/activated (MHCIIhigh/CD86high) or immature (MHCIIlow/CD86low) DCs during sepsis. However, there was a preferential loss of CD8+ DCs in the local and distant lymph nodes. The loss of DCs in lymphoid tissue, particularly CD8+ lymphoid-derived DCs, may contribute to the alterations in acquired immune status that frequently accompany sepsis.


Journal of Clinical Investigation | 1999

Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus

S.A. Litherland; X.T. Xie; Alan D. Hutson; Clive Wasserfall; D.S. Whittaker; Jin Xiong She; A. Hofig; M.A. Dennis; K. Fuller; R. Cook; Desmond A. Schatz; L.L. Moldawer; Michael Clare-Salzler

Prostaglandins (PGs) are lipid molecules that profoundly affect cellular processes including inflammation and immune response. Pathways contributing to PG output are highly regulated in antigen-presenting cells such as macrophages and monocytes, which produce large quantities of these molecules upon activation. In this report, we demonstrate aberrant constitutive expression of the normally inducible cyclooxygenase PG synthase 2 (PGS(2)/ COX-2) in nonactivated monocytes of humans with insulin-dependent diabetes mellitus (IDDM) and those with islet autoantibodies at increased risk of developing this disease. Constitutive PGS(2) appears to characterize a high risk for diabetes as it correlates with and predicts a low first-phase insulin response in autoantibody-positive subjects. Abnormal PGS(2) expression in at-risk subjects affected immune response in vitro, as the presence of a specific PGS(2) inhibitor, NS398, significantly increased IL-2 receptor alpha-chain (CD25) expression on phytohemagglutinin-stimulated T cells. The effect of PGS(2) on CD25 expression was most profound in subjects expressing both DR04 and DQbeta0302 high-risk alleles, suggesting that this cyclooxygenase interacts with diabetes-associated MHC class II antigens to limit T-cell activation. These results indicate that constitutive PGS(2) expression in monocytes defines an antigen-presenting cell defect affecting immune response, and that this expression is a novel cell-associated risk marker for IDDM.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis

Caroline Oberholzer; Andreas Oberholzer; Frances R. Bahjat; Rebecca M. Minter; Cynthia L. Tannahill; Amer Abouhamze; Drake LaFace; Beth Hutchins; Michael Clare-Salzler; Lyle L. Moldawer

Sepsis remains a significant clinical conundrum, and recent clinical trials with anticytokine therapies have produced disappointing results. Animal studies have suggested that increased lymphocyte apoptosis may contribute to sepsis-induced mortality. We report here that inhibition of thymocyte apoptosis by targeted adenovirus-induced thymic expression of human IL-10 reduced blood bacteremia and prevented mortality in sepsis. In contrast, systemic administration of an adenovirus expressing IL-10 was without any protective effect. Improvements in survival were associated with increases in Bcl-2 expression and reductions in caspase-3 activity and thymocyte apoptosis. These studies demonstrate that thymic apoptosis plays a critical role in the pathogenesis of sepsis and identifies a gene therapy approach for its therapeutic intervention.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2014

Clinical pharmacogenetics implementation: Approaches, successes, and challenges

Kristin Weitzel; Amanda R. Elsey; Taimour Y. Langaee; Benjamin Burkley; David R. Nessl; Aniwaa Owusu Obeng; Benjamin Staley; Hui-Jia Dong; Robert W. Allan; J. Felix Liu; Rhonda M. Cooper-DeHoff; R. David Anderson; Michael Conlon; Michael Clare-Salzler; David R. Nelson; Julie A. Johnson

Current challenges exist to widespread clinical implementation of genomic medicine and pharmacogenetics. The University of Florida (UF) Health Personalized Medicine Program (PMP) is a pharmacist‐led, multidisciplinary initiative created in 2011 within the UF Clinical Translational Science Institute. Initial efforts focused on pharmacogenetics, with long‐term goals to include expansion to disease‐risk prediction and disease stratification. Herein we describe the processes for development of the program, the challenges that were encountered and the clinical acceptance by clinicians of the genomic medicine implementation. The initial clinical implementation of the UF PMP began in June 2012 and targeted clopidogrel use and the CYP2C19 genotype in patients undergoing left heart catheterization and percutaneous‐coronary intervention (PCI). After 1 year, 1,097 patients undergoing left heart catheterization were genotyped preemptively, and 291 of those underwent subsequent PCI. Genotype results were reported to the medical record for 100% of genotyped patients. Eighty patients who underwent PCI had an actionable genotype, with drug therapy changes implemented in 56 individuals. Average turnaround time from blood draw to genotype result entry in the medical record was 3.5 business days. Seven different third party payors, including Medicare, reimbursed for the test during the first month of billing, with an 85% reimbursement rate for outpatient claims that were submitted in the first month. These data highlight multiple levels of success in clinical implementation of genomic medicine.


Scandinavian Journal of Immunology | 2005

Dexamethasone Induces IL-10-Producing Monocyte- Derived Dendritic Cells with Durable Immaturity

Chang-Qing Xia; Ruihua Peng; F. Beato; Michael Clare-Salzler

It is highly desirable that immature dendritic cells (DC) used for tolerance induction maintain steady immature state with predominant interleukin (IL)‐10 production. In this study, we attempted to develop DC with durable immaturity and other tolerogenic features by using dexamethasone (Dex). We found DC derived from human monocytes in the presence of 10−7 m Dex were negative for CD1a. Compared with control transduced DC (Ctrl‐DC), Dex‐DC expressed lower CD40, CD80 and CD86 but equivalent human leucocyte antigen‐DR. Both immature Dex‐ and Ctrl‐DC did not express CD83. Nevertheless, upon stimulation of lipopolysaccharide (LPS) or CD40 ligand, the expression of CD40, CD80, CD83 and CD86 was upregulated on Ctrl‐DC but not on Dex‐DC. The immaturity of Dex‐DC was durable following Dex removal. Interestingly, Dex‐DC maintained production of large amount of IL‐10 and little IL‐12 five days after Dex removed. Further study indicated that high‐level IL‐10 production by Dex‐DC was associated with high‐level phosphorylation of extracellular signal‐regulated kinase (ERK) as blockade of this enzyme markedly attenuated IL‐10 production. Furthermore, Dex‐DC sustained the capability of high phosphorylation of ERK and IL‐10 production 5 days after Dex removal. In addition, Dex‐DC had significantly lower activity in stimulating T‐cell proliferation. Neutralization of IL‐10, to some extent, promoted DC maturation activated by LPS, as well as T‐cell stimulatory activity of Dex‐DC. The above findings suggest that IL‐10‐producing Dex‐DC with durable immaturity are potentially useful for induction of immune tolerance.


Journal of Immunology | 2005

CD11c+ Dendritic Cells Are Required for Survival in Murine Polymicrobial Sepsis

Philip O. Scumpia; Priscilla F. McAuliffe; Kerri O'Malley; Ricardo Ungaro; Takefumi Uchida; Tadashi Matsumoto; Daniel G. Remick; Michael Clare-Salzler; Lyle L. Moldawer; Philip A. Efron

CD11c+ dendritic cells (DCs) are APCs that link innate and adaptive immunity. Although DCs are lost from spleen and lymph nodes in sepsis, their role in outcome remains unclear. Transgenic mice (B6.FVB-Tg.Itgax-DTR/EGFP.57Lan/J) expressing the diphtheria toxin (DT) receptor on the CD11c promoter (DCKO mice) received 4 ng/kg DT, which resulted in depletion of 88–95% of mature myeloid and lymphoid DCs, with less depletion (75%) of plasmacytoid DCs. Pretreatment of DCKO mice with DT resulted in reduced survival in sepsis compared with saline-pretreated DCKO mice (0 vs 54%; p < 0.05) or DT-treated wild-type littermates (0 vs 54%; p < 0.05). This increased mortality was not associated with either increased bacteremia or plasma cytokine concentrations. Intravenous injection of 107 wild-type DCs improved survival in DCKO mice (42 vs 0%; p = 0.05). These data confirm that DCs are essential in the septic response and suggest that strategies to maintain DC numbers or function may improve outcome.

Collaboration


Dive into the Michael Clare-Salzler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl L. Womer

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge