Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Czisch is active.

Publication


Featured researches published by Michael Czisch.


Cerebral Cortex | 2011

Development of the Brain's Default Mode Network from Wakefulness to Slow Wave Sleep

Philipp G. Sämann; R. Wehrle; D. Hoehn; Victor I. Spoormaker; Henning Peters; Carolin Tully; Florian Holsboer; Michael Czisch

Falling asleep is paralleled by a loss of conscious awareness and reduced capacity to process external stimuli. Little is known on sleep-associated changes of spontaneously synchronized anatomical networks as detected by resting-state functional magnetic resonance imaging (rs-fMRI). We employed functional connectivity analysis of rs-fMRI series obtained from 25 healthy participants, covering all non-rapid eye movement (NREM) sleep stages. We focused on the default mode network (DMN) and its anticorrelated network (ACN) that are involved in internal and external awareness during wakefulness. Using independent component analysis, cross-correlation analysis (CCA), and intraindividual dynamic network tracking, we found significant changes in DMN/ACN integrity throughout the NREM sleep. With increasing sleep depth, contributions of the posterior cingulate cortex (PCC)/retrosplenial cortex (RspC), parahippocampal gyrus, and medial prefrontal cortex to the DMN decreased. CCA revealed a breakdown of corticocortical functional connectivity, particularly between the posterior and anterior midline node of the DMN and the DMN and the ACN. Dynamic tracking of the DMN from wakefulness into slow wave sleep in a single subject added insights into intraindividual network fluctuations. Results resonate with a role of the PCC/RspC for the regulation of consciousness. We further submit that preserved corticocortical synchronization could represent a prerequisite for maintaining internal and external awareness.


Molecular Psychiatry | 2016

Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group.

Lianne Schmaal; Dick J. Veltman; T G M van Erp; Philipp G. Sämann; Thomas Frodl; Neda Jahanshad; Elizabeth Loehrer; Henning Tiemeier; A. Hofman; Wiro J. Niessen; Meike W. Vernooij; M. A. Ikram; K. Wittfeld; H. J. Grabe; A Block; K. Hegenscheid; Henry Völzke; D. Hoehn; Michael Czisch; Jim Lagopoulos; Sean N. Hatton; Ian B. Hickie; Roberto Goya-Maldonado; Bernd Krämer; Oliver Gruber; Baptiste Couvy-Duchesne; Miguel E. Rentería; Lachlan T. Strike; N T Mills; G. I. de Zubicaray

The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen’s d=−0.14, % difference=−1.24). This effect was driven by patients with recurrent MDD (Cohen’s d=−0.17, % difference=−1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen’s d=−0.20, % difference=−1.85) and a trend toward smaller amygdala (Cohen’s d=−0.11, % difference=−1.23) and larger lateral ventricles (Cohen’s d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.


NeuroImage | 2002

Altered Processing of Acoustic Stimuli during Sleep: Reduced Auditory Activation and Visual Deactivation Detected by a Combined fMRI/EEG Study

Michael Czisch; Thomas C. Wetter; Christian Kaufmann; Thomas Pollmächer; Florian Holsboer; Dorothee P. Auer

Although there is evidence that acoustic stimuli are processed differently during sleep and wakefulness, little is known about the underlying neuronal mechanisms. In the present study, the processing of an acoustic stimulus was investigated during different non rapid eye movement (NREM) sleep stages using a combined EEG/fMRI approach in healthy human volunteers: A text stimulus was presented to sleep-deprived subjects prior to and after the onset of sleep, and single-slice silent fMRI were acquired. We found significantly different blood oxygenation level-dependent (BOLD) contrast responses during sleep compared to wakefulness. During NREM sleep stages 1 and 2 and during slow wave sleep (SWS) we observed reduced activation in the auditory cortex and a pronounced negative signal in the visual cortex and precuneus. Acoustic stimulation during sleep was accompanied by an increase in EEG frequency components in the low delta frequency range. Provided that neurovascular coupling is not altered during sleep, the negative transmodal BOLD response which is most pronounced during NREM sleep stages 1 and 2 reflects a deactivation predominantly in the visual cortex suggesting that this decrease in neuronal activity protects the brain from the arousing effects of external stimulation during sleep not only in the primary targeted sensory cortex but also in other brain regions.


The Journal of Neuroscience | 2010

Development of a Large-Scale Functional Brain Network during Human Non-Rapid Eye Movement Sleep

Victor I. Spoormaker; Manuel S. Schröter; Pablo M. Gleiser; Kátia C. Andrade; Martin Dresler; R. Wehrle; Philipp G. Sämann; Michael Czisch

Graph theoretical analysis of functional magnetic resonance imaging (fMRI) time series has revealed a small-world organization of slow-frequency blood oxygen level-dependent (BOLD) signal fluctuations during wakeful resting. In this study, we used graph theoretical measures to explore how physiological changes during sleep are reflected in functional connectivity and small-world network properties of a large-scale, low-frequency functional brain network. Twenty-five young and healthy participants fell asleep during a 26.7 min fMRI scan with simultaneous polysomnography. A maximum overlap discrete wavelet transformation was applied to fMRI time series extracted from 90 cortical and subcortical regions in normalized space after residualization of the raw signal against unspecific sources of signal fluctuations; functional connectivity analysis focused on the slow-frequency BOLD signal fluctuations between 0.03 and 0.06 Hz. We observed that in the transition from wakefulness to light sleep, thalamocortical connectivity was sharply reduced, whereas corticocortical connectivity increased; corticocortical connectivity subsequently broke down in slow-wave sleep. Local clustering values were closest to random values in light sleep, whereas slow-wave sleep was characterized by the highest clustering ratio (gamma). Our findings support the hypothesis that changes in consciousness in the descent to sleep are subserved by reduced thalamocortical connectivity at sleep onset and a breakdown of general connectivity in slow-wave sleep, with both processes limiting the capacity of the brain to integrate information across functional modules.


European Journal of Neuroscience | 2004

Functional MRI during sleep : BOLD signal decreases and their electrophysiological correlates

Michael Czisch; R. Wehrle; Christian Kaufmann; Thomas C. Wetter; Florian Holsboer; Thomas Pollmächer; Dorothee P. Auer

Prominent local decreases in blood oxygenation level (BOLD) can be observed by functional magnetic resonance imaging (fMRI) upon acoustic stimulation during sleep. The goal of this study was to further characterize this BOLD signal decrease with respect to corresponding neurophysiological phenomena using a simultaneous electroencephalography (EEG)/fMRI approach in sleeping human subjects. Healthy volunteers were subjected to acoustic stimulation during non‐rapid eye movement (NREM) sleep. On the basis of statistical parametric maps, the correlations between the fMRI response (both amplitude and extent of the BOLD response) and the concomittant changes in the EEG (delta power and K‐complexes) were calculated. Amplitude and extent of the stimulus‐induced negative BOLD effect correlated positively with measures of EEG synchronization, namely an increase in the number of K‐complexes and EEG delta power. Stimulus‐induced BOLD decreases were most prominent during light (stage 2) NREM sleep and disappeared during slow wave sleep, indicating an influence of the baseline degree of hyperpolarization. Our observations provide first evidence that ‘negative’ BOLD signal changes during human sleep are associated with electrophysiological indicators of altered neuronal activity. Increased number of K‐complexes and delta power reflecting hyperpolarization suggests true cortical deactivation upon stimulus presentation. This sleep stage‐dependent deactivation might serve to protect the brain from arousing stimuli, particularly during the light phases of sleep shortly after sleep onset.


European Journal of Neuroscience | 2007

Functional microstates within human REM sleep : first evidence from fMRI of a thalamocortical network specific for phasic REM periods

R. Wehrle; Christian Kaufmann; Thomas C. Wetter; Florian Holsboer; Dorothee P. Auer; Thomas Pollmächer; Michael Czisch

High thalamocortical neuronal activity characterizes both, wakefulness and rapid eye movement (REM) sleep, but apparently this network fulfills other roles than processing external information during REM sleep. To investigate thalamic and cortical reactivity during human REM sleep, we used functional magnetic resonance imaging with simultaneous polysomnographic recordings while applying acoustic stimulation. Our observations indicate two distinct functional substates within general REM sleep. Acoustic stimulation elicited a residual activation of the auditory cortex during tonic REM sleep background without rapid eye movements. By contrast, periods containing bursts of phasic activity such as rapid eye movements appear characterized by a lack of reactivity to sensory stimuli. We report a thalamocortical network including limbic and parahippocampal areas specifically active during phasic REM periods. Thus, REM sleep has to be subdivided into tonic REM sleep with residual alertness, and phasic REM sleep with the brain acting as a functionally isolated and closed intrinsic loop.


Nature Biotechnology | 1999

A synthetic peptide adhesion epitope as a novel antimicrobial agent

Charles G. Kelly; Justine S. Younson; Ban Y. Hikmat; Stephen Todryk; Michael Czisch; Parvez I. Haris; Ian R. Flindall; Craig Newby; Anthony I. Mallet; Julian K-C. Ma; Thomas Lehner

The earliest step in microbial infection is adherence by specific microbial adhesins to the mucosa of the oro-intestinal, nasorespiratory, or genitourinary tract. We inhibited binding of a cell surface adhesin of Streptococcus mutans to salivary receptors in vitro, as measured by surface plasmon resonance, using a synthetic peptide (p1025) corresponding to residues 1025–1044 of the adhesin. Two residues within p1025 that contribute to binding (Q1025, E1037) were identified by site-directed mutagenesis. In an in vivo human streptococcal adhesion model, direct application of p1025 to the teeth prevented recolonization of S. mutans but not Actinomyces, as compared with a control peptide or saline. This novel antimicrobial strategy, applying competitive peptide inhibitors of adhesion, may be used against other microorganisms in which adhesins mediate colonization of mucosal surfaces.


The Journal of Neuroscience | 2011

Sleep Spindles and Hippocampal Functional Connectivity in Human NREM Sleep

Kátia C. Andrade; Victor I. Spoormaker; Martin Dresler; R. Wehrle; Florian Holsboer; Philipp G. Sämann; Michael Czisch

We investigated human hippocampal functional connectivity in wakefulness and throughout non-rapid eye movement sleep. Young healthy subjects underwent simultaneous EEG and functional magnetic resonance imaging (fMRI) measurements at 1.5 T under resting conditions in the descent to deep sleep. Continuous 5 min epochs representing a unique sleep stage (i.e., wakefulness, sleep stages 1 and 2, or slow-wave sleep) were extracted. fMRI time series of subregions of the hippocampal formation (HF) (cornu ammonis, dentate gyrus, and subiculum) were extracted based on cytoarchitectonical probability maps. We observed sleep stage-dependent changes in HF functional coupling. The HF was integrated to variable strength in the default mode network (DMN) in wakefulness and light sleep stages but not in slow-wave sleep. The strongest functional connectivity between the HF and neocortex was observed in sleep stage 2 (compared with both slow-wave sleep and wakefulness). We observed a strong interaction of sleep spindle occurrence and HF functional connectivity in sleep stage 2, with increased HF/neocortical connectivity during spindles. Moreover, the cornu ammonis exhibited strongest functional connectivity with the DMN during wakefulness, while the subiculum dominated hippocampal functional connectivity to frontal brain regions during sleep stage 2. Increased connectivity between HF and neocortical regions in sleep stage 2 suggests an increased capacity for possible global information transfer, while connectivity in slow-wave sleep is reflecting a functional system optimal for segregated information reprocessing. Our data may be relevant to differentiating sleep stage-specific contributions to neural plasticity as proposed in sleep-dependent memory consolidation.


Neuroreport | 2005

Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study.

R. Wehrle; Michael Czisch; Christian Kaufmann; Thomas C. Wetter; Florian Holsboer; Dorothee P. Auer; Thomas Pollmächer

In animal models, ponto-geniculo-occipital waves appear as an early sign of rapid eye movement sleep and may be functionally significant for brain plasticity processes. In this pilot study, we use a combined polysomnographic and functional magnetic resonance imaging approach, and show distinct magnetic resonance imaging signal increases in the posterior thalamus and occipital cortex in close temporal relationship to rapid eye movements during human rapid eye movement sleep. These findings are consistent with cell recordings in animal experiments and demonstrate that functional magnetic resonance imaging can be utilized to detect ponto-geniculo-occipital-like activity in humans. Studying intact neuronal networks underlying sleep regulation is no longer confined to animal models, but has been shown to be feasible in humans by a combined functional magnetic resonance imaging and electroencephalograph approach.


Molecular Psychiatry | 2017

Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group

Lianne Schmaal; D. P. Hibar; Philipp G. Sämann; Geoffrey B. Hall; Bernhard T. Baune; Neda Jahanshad; J W Cheung; T G M van Erp; Daniel Bos; M. A. Ikram; Meike W. Vernooij; Wiro J. Niessen; Henning Tiemeier; A Hofman; K. Wittfeld; H. J. Grabe; Deborah Janowitz; R. Bülow; M. Selonke; Henry Völzke; Dominik Grotegerd; Udo Dannlowski; V. Arolt; Nils Opel; W Heindel; H Kugel; D. Hoehn; Michael Czisch; Baptiste Couvy-Duchesne; Miguel E. Rentería

The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen’s d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.

Collaboration


Dive into the Michael Czisch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Kaufmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge