Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Aleo is active.

Publication


Featured researches published by Michael D. Aleo.


Toxicological Sciences | 2013

Use of Micropatterned Cocultures to Detect Compounds That Cause Drug-Induced Liver Injury in Humans

Salman R. Khetani; Chitra Kanchagar; Okechukwu Ukairo; Stacy Krzyzewski; Amanda Moore; Julianne Shi; Simon Aoyama; Michael D. Aleo; Yvonne Will

Because drug-induced liver injury (DILI) remains a major reason for late-stage drug attrition, predictive assays are needed that can be deployed throughout the drug discovery process. Clinical DILI can be predicted with a sensitivity of ~50% and a false positive (FP) rate of ~5% using 24-h cultures of sandwich-cultured primary human hepatocytes and imaging of four cell injury endpoints (Xu et al., 2008). We hypothesized that long-term drug dosing in a functionally stable model of primary hepatocytes (micropatterned cocultures [MPCCs]) could provide for increased predictivity over short-term dosing paradigms. We used MPCCs with either primary human or rat hepatocytes to understand possible species differences along with standard endpoints (glutathione levels, ATP levels, albumin, and urea secretion) to test 45 drugs either known or not known to cause clinical DILI. Human MPCCs correctly detected 23 of 35 compounds known to cause DILI (65.7% sensitivity), with a FP rate of 10% for the 10 negative compounds tested. Rat MPCCs correctly detected 17 of 35 DILI compounds (48.6% sensitivity) and had a higher FP rate than human MPCCs (20 vs. 10%). For an additional 19 drugs with the most DILI concern, human MPCCs displayed a sensitivity of 100% when at least two hepatocyte donors were used for testing. Furthermore, MPCCs were able to detect relative clinical toxicities of structural drug analogs. In conclusion, MPCCs showed superiority over conventional short-term cultures for predictions of clinical DILI, and human MPCCs were more predictive for human liabilities than their rat counterparts.


Hepatology | 2014

Human drug‐induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump

Michael D. Aleo; Yi Luo; Rachel Swiss; Paul D. Bonin; David M. Potter; Yvonne Will

Drug‐induced liver injury (DILI) accounts for 20‐40% of all instances of clinical hepatic failure and is a common reason for withdrawal of an approved drug or discontinuation of a potentially new drug from clinical/nonclinical development. Numerous individual risk factors contribute to the susceptibility to human DILI and its severity that are either compound‐ and/or patient‐specific. Compound‐specific primary mechanisms linked to DILI include: cytotoxicity, reactive metabolite formation, inhibition of bile salt export pump (BSEP), and mitochondrial dysfunction. Since BSEP is an energy‐dependent protein responsible for the efflux of bile acids from hepatocytes, it was hypothesized that humans exposed to drugs that impair both mitochondrial energetics and BSEP functional activity are more sensitive to more severe manifestations of DILI than drugs that only have a single liability factor. As annotated in the United States National Center for Toxicological Research Liver Toxicity Knowledge Base (NCTR‐LTKB), the inhibitory properties of 24 Most‐DILI‐, 28 Less‐DILI‐, and 20 No‐DILI‐concern drugs were investigated. Drug potency for inhibiting BSEP or mitochondrial activity was generally correlated across human DILI concern categories. However, drugs with dual potency as mitochondrial and BSEP inhibitors were highly associated with more severe human DILI, more restrictive product safety labeling related to liver injury, and appear more sensitive to the drug exposure (Cmax) where more restrictive labeling occurs. Conclusion: These data affirm that severe manifestations of human DILI are multifactorial, highly associated with combinations of drug potency specifically related to known mechanisms of DILI (like mitochondrial and BSEP inhibition), and, along with patient‐specific factors, lead to differences in the severity and exposure thresholds associated with clinical DILI. (Hepatology 2014;60:1015–1022)


Drug Metabolism Reviews | 2012

Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development

Adrian Hill; Natalie Mesens; Margino Steemans; Jinghai James Xu; Michael D. Aleo

Drug-induced liver injury (DILI) is a major cause of attrition during both the early and later stages of the drug development and marketing process. Reducing or eliminating drug-induced severe liver injury, especially those that lead to liver transplants or death, would be tremendously beneficial for patients. Therefore, developing new pharmaceuticals that have the highest margins and attributes of hepatic safety would be a great accomplishment. Given the current low productivity of pharmaceutical companies and the high costs of bringing new medicines to market, any early screening assay(s) to identify and eliminate pharmaceuticals with the potential to cause severe liver injury in humans would be of economic value as well. The present review discusses the background, proof-of-concept, and validation studies associated with high-content screening (HCS) by two major pharmaceutical companies (Pfizer Inc and Jansen Pharmaceutical Companies of Johnson & Johnson) for detecting compounds with the potential to cause human DILI. These HCS assays use fluorescent-based markers of cell injury in either human hepatocytes or HepG2 cells. In collaboration with Evotec, an independent contract lab, these two companies also independently evaluated larval zebrafish as an early-stage in vivo screen for hepatotoxicity in independently conducted, blinded assessments. Details about this model species, the need for bioanalysis, and, specifically, the outcome of the phenotypic-based zebrafish screens are presented. Comparing outcomes in zebrafish against both HCS assays suggests an enhanced detection for hepatotoxicants of most DILI concern when used in combination with each other, based on the U.S. Food and Drug Administration DILI classification list.


Bioorganic & Medicinal Chemistry Letters | 2010

Using an in vitro cytotoxicity assay to aid in compound selection for in vivo safety studies.

Nigel Greene; Michael D. Aleo; Shirley Louise-May; David A. Price; Yvonne Will

Recent publications have demonstrated that using calculated physiochemical properties can help in the design of compounds that have a decreased risk of significant findings in rodent toxicology studies. In this Letter, we extend this concept and incorporate results from a high throughput cytotoxicity assay to help the drug discovery community select compounds for progression into in vivo studies. The results are presented in an easily interpretable odds ratio so that teams can readily compare compounds and progress potential clinical candidates to the necessary rodent in vivo studies.


Toxicology Letters | 2010

Predicting safety toleration of pharmaceutical chemical leads: Cytotoxicity correlations to exploratory toxicity studies

John William Benbow; Michael J. Banker; David O. Nettleton; Michael D. Aleo

The selection and application of appropriate safety screening paradigms could revolutionize the drug discovery process by reducing safety-related attrition. While mechanism specific genotoxicity and safety pharmacology assays are routinely used in screening, the overall value of employing nonspecific cytotoxicity assays remains controversial. A retrospective analysis of safety findings from rat exploratory toxicity studies (4-14 days) utilizing compounds that spanned broad therapeutic targets (protease, transport, G-protein-coupled receptors, and kinase inhibitors, cGMP modulators) demonstrated that safety toleration in vivo could be approximated using cytotoxicity values. A composite safety score was calculated for each compound dose based on findings in each of the following categories: systemic toleration (mortality, food consumption, and adverse clinical signs), clinical chemistry/hematology parameters (deviations from normal ranges), and multiorgan pathology (necrosis or incidence/severity of histologic change). Binning compounds into potent (LC(50)<10 microM) and non-potent (LC(50)>100 microM) cytotoxicants in vitro showed that compared to non-potent cytotoxicants the exposure to potent cytotoxicants in vivo resulted in higher overall severity scores at lower exposures. Correlating overall toleration for individual compounds was further refined when in vivo exposure was considered. When average plasma exposure (Cp(ave)) for a compound exceeded its mean lethal concentration (LC(50)) in vitro (Cp(ave)/LC(50)>1), higher overall severity scores were achieved compared to lower exposure margins (Cp(ave)/LC(50) <0.01). Based on this analysis, the ability to select lead series and individual compounds with better safety characteristics is presented. In summary, cytotoxicity screening can be used to approximate, not define, the safety characteristics of lead pharmaceutical series early in the drug discovery process.


Cutaneous and Ocular Toxicology | 2009

A current practice for predicting ocular toxicity of systemically delivered drugs

Chris J. Somps; Nigel Greene; James A. Render; Michael D. Aleo; Jay Fortner; James A. Dykens; Gareth Phillips

The ability to predict ocular side effects of systemically delivered drugs is an important issue for pharmaceutical companies. Although animal models involving standard clinical ophthalmic examinations and postmortem microscopic examinations of eyes are still used to identify ocular issues, these methods are being supplemented with additional in silico, in vitro, and in vivo techniques to identify potential safety issues and assess risk. The addition of these tests to a development plan for a potential new drug provides the opportunity to save time and money by detecting ocular issues earlier in the program. This review summarizes a current practice for minimizing the potential for systemically administered, new medicines to cause adverse effects in the eye.


Chemical Research in Toxicology | 2017

Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals

Michael D. Aleo; Falgun Shah; Kan He; Paul D. Bonin; A. David Rodrigues

The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective strategy for prioritizing drug candidates with less likelihood of causing clinical DILI.


Annals of the New York Academy of Sciences | 2006

The Use of Explant Lens Culture to Assess Cataractogenic Potential

Michael D. Aleo; Michael J. Avery; William P. Beierschmitt; Cynthia A. Drupa; Jay Fortner; Adam H. Kaplan; Kimberly A. Navetta; Richard M. Shepard; Colleen M. Walsh

Abstract: Explanted cultures of crystalline lenses have been used to investigate mechanisms of xenobiotic‐induced cataract formation. However, very few studies have utilized mechanistic information to predict the cataractogenic potential of structurally diverse xenobiotics. The present investigation outlines how visual assessment of lens clarity, biochemical endpoints of toxicity, and mechanisms of lenticular opacity formation can be used to select compounds with a lower probability of causing cataract formation in vivo. The rat lens explant culture system has been used to screen thiazolidinediones against ciglitazone for their direct cataractogenic potential in vitro. The two compounds that were selected as development candidates (englitazone and darglitazone) did not produce cataracts in rats exposed daily for 3 months. The culture system has also been used to illustrate that the lens is capable of metabolizing compounds to reactive intermediates. In this example, the toxicity of S‐(1,2‐dichlorovinyl)‐L‐cysteine (DCVC), a model cataractogen, was attenuated by inhibiting lenticular cysteine conjugate β‐lyase metabolism using aminooxyacetic acid. Finally, this model was used retrospectively to investigate the cataractogenic potential of CJ‐12,918 and CJ‐13,454 in rats. These compounds showed differences in the incidence of cataract formation in vivo based on differences in hepatic metabolism and penetration of parent drug and metabolites into the lens. The rank order of cataractogenic potential in vitro correlated better with in vivo results when an induced S9 microsomal fraction was added to the culture media. However, the model did not correctly predict the cataractogenic potential of ZD2138, a structurally similar compound. These studies illustrate the use of explant culture to assess mechanisms of cataract formation and outline its use and limitations for predicting cataractogenic potential in vivo.


Toxicology and Applied Pharmacology | 2008

An underlying role for hepatobiliary dysfunction in cyclosporine A nephrotoxicity

Michael D. Aleo; Colleen M. Doshna; Carol A. Fritz

Renal-derived cysteinyl leukotrienes (cysLT), such as leukotrienes C(4) (LTC(4)) and D(4) (LTD(4)) are thought to mediate acute and chronic cyclosporine A (CSA) nephrotoxicity. However, whole-body cysLT elimination is regulated primarily by hepatobiliary excretion. Since CSA is known to alter hepatobiliary function, the effects of CSA on whole-body cysLT elimination were investigated in vivo, with respect to hepatobiliary and renal function. Male rats were anesthetized and cannulated (jugular vein, bile duct, and urinary bladder). A tracer dose of tritiated LTC(4) ((3)H-LTC(4)) was administered systemically (i.v.) immediately following vehicle and then 90 min later after vehicle or CSA. In vehicle/vehicle controls, hepatobiliary (3)H-cysLT elimination predominated over renal elimination without altering glomerular filtration rate (GFR), bile flow, and urine production. (3)H-cysLT elimination kinetics were comparable between each 90 min collection period. In vehicle/CSA-treated rats, an acutely nephrotoxic dose of CSA (20 mg/kg, i.v.) reduced urine flow 74+/-9% and caused a transient reduction in GFR, while total bile flow decreased 40+/-13%. Hepatobiliary and renal (3)H-cysLT elimination was also impaired 59+/-5 and 61+/-18%, respectively. In contrast, a non-nephrotoxic dose (2 mg/kg i.v.) increased renal (3)H-cysLT elimination due to impaired hepatobiliary elimination without affecting GFR, bile flow or urine production. Both doses caused (3)H-cysLT retention in hepatic and renal tissue. These findings demonstrate that CSA alters whole-body handling of cysLT by disrupting hepatobiliary cysLT elimination. This disruption leads to increased renal exposure to systemically derived cysLT and renal cysLT tissue retention. Renal exposure to and accumulation of systemically derived cysLT products may be underlying factors in CSA nephrotoxicity.


Investigative Ophthalmology & Visual Science | 2013

1,2-Naphthoquinone Stimulates Lipid Peroxidation and Cholesterol Domain Formation in Model Membranes

Robert F. Jacob; Michael D. Aleo; Yehudi Self-Medlin; Colleen M. Doshna; R. Preston Mason

PURPOSE Naphthalene induces cataract formation through the accumulation of its reactive metabolite, 1,2-naphthoquinone (1,2-NQ), in the ocular lens. 1,2-NQ increases lens protein oxidation and disrupts fiber cell membrane function; however, the association of these effects with changes in membrane structure is not understood. The goal of this study was to determine the direct effects of 1,2-NQ on membrane lipid oxidation and structural organization. METHODS Iodometric approaches were used to measure the effects of naphthalene and 1,2-NQ on lipid hydroperoxide (LOOH) formation in model membranes composed of cholesterol and dilinoleoylphosphatidylcholine. Membrane samples were prepared at various cholesterol-to-phospholipid mole ratios and subjected to autoxidation at 37°C for 48 hours in the absence or presence of either agent alone (0.1-5.0 μM) or in combination with vitamin E. Small-angle x-ray diffraction was used to measure the effects of naphthalene and 1,2-NQ on membrane structure before and after exposure to oxidative stress. RESULTS 1,2-NQ increased LOOH formation by 250% (P < 0.001) and 350% (P < 0.001) at 1.0 and 5.0 μM, respectively, whereas naphthalene decreased LOOH levels by 25% (P < 0.01) and 10% (NS). The pro-oxidant effect of 1,2-NQ was inversely affected by membrane cholesterol enrichment and completely blocked by vitamin E. 1,2-NQ also increased cholesterol domain formation by 360% in membranes exposed to oxidative stress; however, no significant changes in membrane lipid organization were observed with naphthalene under the same conditions. CONCLUSIONS These data suggest a novel mechanism for naphthalene-induced cataract, facilitated by the direct effects of 1,2-NQ on lipid peroxidation and cholesterol domain formation.

Collaboration


Dive into the Michael D. Aleo's collaboration.

Researchain Logo
Decentralizing Knowledge