Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Sintchak is active.

Publication


Featured researches published by Michael D. Sintchak.


Cell | 1995

X-RAY STRUCTURE OF CALCINEURIN INHIBITED BY THE IMMUNOPHILIN-IMMUNOSUPPRESSANT FKBP12-FK506 COMPLEX

James P. Griffith; Joseph L. Kim; Eunice E. Kim; Michael D. Sintchak; John A. Thomson; Matthew J. Fitzgibbon; Mark A. Fleming; Paul R. Caron; Kathy Hsiao; Manuel A. Navia

The X-ray structure of the ternary complex of a calcineurin A fragment, calcineurin B, FKBP12, and the immunosuppressant drug FK506 (also known as tacrolimus) has been determined at 2.5 A resolution, providing a description of how FK506 functions at the atomic level. In the structure, the FKBP12-FK506 binary complex does not contact the phosphatase active site on calcineurin A that is more than 10 A removed. Instead, FKBP12-FK506 is so positioned that it can inhibit the dephosphorylation of its macromolecular substrates by physically hindering their approach to the active site. The ternary complex described here represents the three-dimensional structure of a Ser/Thr protein phosphatase and provides a structural basis for understanding calcineurin inhibition by FKBP12-FK506.


Immunopharmacology | 2000

The structure of inosine 5′-monophosphate dehydrogenase and the design of novel inhibitors

Michael D. Sintchak; Elmar Nimmesgern

The enzyme IMPDH is a homotetramer of approximately 55 kDa subunits and consists of a (beta/alpha)(8) barrel core domain and a smaller subdomain. The active site has binding pockets for the two substrates IMP and NAD. The enzymatic reaction of oxidation of IMP to XMP proceeds through a covalent mechanism involving an active site cysteine residue. This enzyme is a target for immunosuppressive agents because it catalyzes a key step in purine nucleotide biosynthesis which is important for the proliferation of lymphocytes. Several X-ray structures of inhibitors bound to IMPDH have been published. The uncompetitive IMPDH inhibitor MPA is the active metabolite of the immunosuppressive agent mycophenolate mofetil (CellCept(R)) which is approved for the prevention of acute rejection after kidney and heart transplantation. The bicyclic ring system of MPA packs underneath the hypoxanthine ring of XMP*, thereby trapping this covalent intermediate of the enzymatic reaction. Ribavirin monophosphate, the active metabolite of the antiviral agent ribavirin, is a substrate mimic of IMP. The structure of the two inhibitors 6-Cl-IMP and SAD binding in the IMP and NAD pockets of IMPDH, respectively, gives information for the binding mode of the di-nucleotide cofactor to the enzyme. At Vertex Pharmaceuticals a structure-based drug design program for the design of IMPDH inhibitors was initiated. Several new lead compound classes unrelated to other IMPDH inhibitors were found. Integrating structural information into an iterative drug-design process led to the design of VX-497. VX-497 is a potent uncompetitive enzyme inhibitor of IMPDH. The phenyl-oxazole moiety of the molecule packs underneath XMP*, analogous to MPA. VX-497 also makes several new interactions that are not observed in the binding of MPA. VX-497 is a potent immunosuppressive agent in vitro and in vivo. A Phase I clinical trial has been successfully concluded and the compound is currently in Phase II trials in psoriasis and hepatitis C. The rapid progress from initiation of the drug design program to a compound entering clinical trials illustrates the power of structure-based drug design to accelerate the drug discovery process. The structural information on IMPDH has also significantly increased our knowledge about the mechanistic details of this fascinating enzyme.


Journal of Biological Chemistry | 2011

Mechanistic Studies of Substrate-assisted Inhibition of Ubiquitin-activating Enzyme by Adenosine Sulfamate Analogues

Jesse J. Chen; Christopher Tsu; James M. Gavin; Michael Milhollen; Frank J. Bruzzese; William D. Mallender; Michael D. Sintchak; Nancy J. Bump; Xiaofeng Yang; Jingya Ma; Huay-Keng Loke; Qing Xu; Ping Li; Neil F. Bence; James E. Brownell; Lawrence R. Dick

Ubiquitin-activating enzyme (UAE or E1) activates ubiquitin via an adenylate intermediate and catalyzes its transfer to a ubiquitin-conjugating enzyme (E2). MLN4924 is an adenosine sulfamate analogue that was identified as a selective, mechanism-based inhibitor of NEDD8-activating enzyme (NAE), another E1 enzyme, by forming a NEDD8-MLN4924 adduct that tightly binds at the active site of NAE, a novel mechanism termed substrate-assisted inhibition (Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., Soucy, T. A., Milhollen, M. A., Yang, X., Burkhardt, A. L., Ma, J., Loke, H. K., Lingaraj, T., Wu, D., Hamman, K. B., Spelman, J. J., Cullis, C. A., Langston, S. P., Vyskocil, S., Sells, T. B., Mallender, W. D., Visiers, I., Li, P., Claiborne, C. F., Rolfe, M., Bolen, J. B., and Dick, L. R. (2010) Mol. Cell 37, 102–111). In the present study, substrate-assisted inhibition of human UAE (Ube1) by another adenosine sulfamate analogue, 5′-O-sulfamoyl-N6-[(1S)-2,3-dihydro-1H-inden-1-yl]-adenosine (Compound I), a nonselective E1 inhibitor, was characterized. Compound I inhibited UAE-dependent ATP-PPi exchange activity, caused loss of UAE thioester, and inhibited E1-E2 transthiolation in a dose-dependent manner. Mechanistic studies on Compound I and its purified ubiquitin adduct demonstrate that the proposed substrate-assisted inhibition via covalent adduct formation is entirely consistent with the three-step ubiquitin activation process and that the adduct is formed via nucleophilic attack of UAE thioester by the sulfamate group of Compound I after completion of step 2. Kinetic and affinity analysis of Compound I, MLN4924, and their purified ubiquitin adducts suggest that both the rate of adduct formation and the affinity between the adduct and E1 contribute to the overall potency. Because all E1s are thought to use a similar mechanism to activate their cognate ubiquitin-like proteins, the substrate-assisted inhibition by adenosine sulfamate analogues represents a promising strategy to develop potent and selective E1 inhibitors that can modulate diverse biological pathways.


Journal of Medicinal Chemistry | 2012

Discovery of a Potent and Orally Bioavailable Benzolactam-Derived Inhibitor of Polo-Like Kinase 1 (MLN0905).

Matthew O. Duffey; Tricia J. Vos; Ruth Adams; Jennifer Alley; Justin Anthony; Cynthia Barrett; Indu T. Bharathan; Douglas Bowman; Nancy J. Bump; Ryan Chau; Courtney Cullis; Denise L. Driscoll; Amy Elder; Nancy Forsyth; Jonathan Frazer; Jianping Guo; Luyi Guo; Marc L. Hyer; David A. Janowick; Bheemashankar Kulkarni; Sujen Lai; Kerri Lasky; Gang Li; Jing Li; Debra Liao; Jeremy D. Little; Bo Peng; Mark G. Qian; Dominic J. Reynolds; Mansoureh Rezaei

This article describes the discovery of a series of potent inhibitors of Polo-like kinase 1 (PLK1). Optimization of this benzolactam-derived chemical series produced an orally bioavailable inhibitor of PLK1 (12c, MLN0905). In vivo pharmacokinetic-pharmacodynamic experiments demonstrated prolonged mitotic arrest after oral administration of 12c to tumor bearing nude mice. A subsequent efficacy study in nude mice achieved tumor growth inhibition or regression in a human colon tumor (HT29) xenograft model.


Biochimica et Biophysica Acta | 2002

A mutational analysis of the active site of human type II inosine 5'-monophosphate dehydrogenase.

Olga Futer; Michael D. Sintchak; Paul R. Caron; Elmar Nimmesgern; Maureen T. DeCenzo; David J. Livingston; Scott A. Raybuck

The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.


Nature Medicine | 2018

A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment

Marc L. Hyer; Michael Milhollen; Jeff Ciavarri; Paul Fleming; Tary Traore; Darshan S. Sappal; Jessica Huck; Judy Shi; James M. Gavin; Jim Brownell; Yu Yang; Bradley Stringer; Robert S. Griffin; Frank J. Bruzzese; Teresa A. Soucy; Jennifer Duffy; Claudia Rabino; Jessica Riceberg; Kara M. Hoar; Anya Lublinsky; Saurabh Menon; Michael D. Sintchak; Nancy J. Bump; Sai M Pulukuri; Steve Langston; Stephen Tirrell; Mike Kuranda; Petter Veiby; John Newcomb; Ping Li

The ubiquitin–proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade. TAK-243 treatment caused depletion of cellular ubiquitin conjugates, resulting in disruption of signaling events, induction of proteotoxic stress, and impairment of cell cycle progression and DNA damage repair pathways. TAK-243 treatment caused death of cancer cells and, in primary human xenograft studies, demonstrated antitumor activity at tolerated doses. Due to its specificity and potency, TAK-243 allows for interrogation of ubiquitin biology and for assessment of UAE inhibition as a new approach for cancer treatment.


Cell | 1996

Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex with the Immunosuppressant Mycophenolic Acid

Michael D. Sintchak; Mark A. Fleming; Olga Futer; Scott A. Raybuck; Stephen P. Chambers; Paul R. Caron; Mark A. Murcko; Keith P. Wilson


Archive | 1997

Molecules comprising an impdh-like binding pocket and encoded data storage medium capable of graphically displaying them

Keith P. Wilson; Michael D. Sintchak; Mark A. Fleming; David M. Armistead


Protein Expression and Purification | 1999

BIOCHEMICAL ANALYSIS OF THE MODULAR ENZYME INOSINE 5'-MONOPHOSPHATE DEHYDROGENASE

Elmar Nimmesgern; James Black; Olga Futer; John R. Fulghum; Stephen P. Chambers; Christopher L. Brummel; Scott A. Raybuck; Michael D. Sintchak


Biochemistry | 1996

INHIBITION OF IMPDH BY MYCOPHENOLIC ACID : DISSECTION OF FORWARD AND REVERSE PATHWAYS USING CAPILLARY ELECTROPHORESIS

Mark A. Fleming; Stephen P. Chambers; Patrick R. Connelly; Elmar Nimmesgern; Ted Fox; Frank J. Bruzzese; Stephen T. Hoe; John R. Fulghum; David J. Livingston; Cameron M. Stuver; Michael D. Sintchak; Keith P. Wilson; John A. Thomson

Collaboration


Dive into the Michael D. Sintchak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney Cullis

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank J. Bruzzese

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Gang Li

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Olga Futer

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge