Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Waterfield is active.

Publication


Featured researches published by Michael D. Waterfield.


Nature | 1983

Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus.

Michael D. Waterfield; Geoffrey T. Scrace; Nigel Whittle; Paul Stroobant; Ann Johnsson; Åke Wasteson; Bengt Westermark; Carl-Henrik Heldin; Jung San Huang; Thomas F. Deuel

A partial amino acid sequence of human platelet-derived growth factor, the major mitogen in serum for cells of mesenchymal origin, has been determined. A region of 104 contiguous amino acids shows virtual identity with the predicted sequence of p28sis, the putative transforming protein of simian sarcoma virus (SSV). This similarity suggests a mechanism for transformation by SSV and other agents, involving expression of growth factors.


Cell | 1997

Role of Phosphoinositide 3-OH Kinase in Cell Transformation and Control of the Actin Cytoskeleton by Ras

Pablo Rodriguez-Viciana; Patricia H. Warne; Asim Khwaja; Barbara M. Marte; Darryl Pappin; Pamela Das; Michael D. Waterfield; Anne J. Ridley; Julian Downward

The pathways by which mammalian Ras proteins induce cortical actin rearrangement and cause cellular transformation are investigated using partial loss of function mutants of Ras and activated and inhibitory forms of various postulated target enzymes for Ras. Efficient transformation by Ras requires activation of other direct effectors in addition to the MAP kinase kinase kinase Raf and is inhibited by inactivation of the PI 3-kinase pathway. Actin rearrangement correlates with the ability of Ras mutants to activate PI 3-kinase. Inhibition of PI 3-kinase activity blocks Ras induction of membrane ruffling, while activated PI 3-kinase is sufficient to induce membrane ruffling, acting through Rac. The ability of activated Ras to stimulate PI 3-kinase in addition to Raf is therefore important in Ras transformation of mammalian cells and essential in Ras-induced cytoskeletal reorganization.


Trends in Biochemical Sciences | 1997

Phosphoinositide 3-kinases: A conserved family of signal transducers

Bart Vanhaesebroeck; Sally J. Leevers; George Panayotou; Michael D. Waterfield

Phosphoinositide 3-kinases (PI3Ks) generate lipids that are implicated in receptor-stimulated signalling and in the regulation of membrane traffic. Several distinct classes of PI3Ks have now been identified that have been conserved throughout eukaryotic evolution. Potential signalling pathways downstream of PI3Ks have been elucidated and PI3K function is now being characterised in several model organisms.


Cell | 1991

Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase.

Masayuki Otsu; Ian Hiles; Ivan Gout; Michael J. Fry; Fernanda Ruiz-Larrea; George Panayotou; Andrew Thompson; Ritu Dhand; J. Justin Hsuan; Nicholas F. Totty; Anthony D. Smith; Sarah J. Morgan; Sara A. Courtneidge; Peter J. Parker; Michael D. Waterfield

Affinity-purified bovine brain phosphatidylinositol 3-kinase (PI3-kinase) contains two major proteins of 85 and 110 kd. Amino acid sequence analysis and cDNA cloning reveals two related 85 kd proteins (p85 alpha and p85 beta), which both contain one SH3 and two SH2 regions (src homology regions). When expressed, these 85 kd proteins bind to and are substrates for tyrosine-phosphorylated receptor kinases and the polyoma virus middle-T antigen/pp60c-src complex, but lack PI3-kinase activity. However, an antiserum raised against p85 beta immunoprecipitates PI3-kinase activity. The active PI3-kinase complex containing p85 alpha or p85 beta and the 110 kd protein binds to PDGF but not EGF receptors. p85 alpha and p85 beta may mediate specific PI3-kinase interactions with a subset of tyrosine kinases.


The EMBO Journal | 1996

Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase

K Salim; M J Bottomley; E Querfurth; M J Zvelebil; I Gout; R Scaife; R L Margolis; R Gigg; C I Smith; P C Driscoll; Michael D. Waterfield; George Panayotou

Pleckstrin homology (PH) domains may act as membrane localization modules through specific interactions with phosphoinositide phospholipids. These interactions could represent responses to second messengers, with scope for regulation by soluble inositol polyphosphates. A biosensor‐based assay was used here to probe interactions between PH domains and unilamellar liposomes containing different phospholipids and to demonstrate specificity for distinct phosphoinositides. The dynamin PH domain specifically interacted with liposomes containing phosphatidylinositol‐4,5‐bisphosphate [PI(4,5)P2] and, more weakly, with liposomes containing phosphatidylinositol‐4‐phosphate [PI(4)P]. This correlates with phosphoinositide activation of the dynamin GTPase. The functional GTPase of a dynamin mutant lacking the PH domain, however, cannot be activated by PI(4,5)P2. The phosphoinositide‐PH domain interaction can be abolished selectively by point mutations in the putative binding pocket predicted by molecular modelling and NMR spectroscopy. In contrast, the Brutons tyrosine kinase (Btk)PH domain specifically bound liposomes containing phosphatidylinositol‐3,4,5‐trisphosphate [PI(3,4,5)P3]: an interaction requiring Arg28, a residue found to be mutated in some X‐linked agammaglobulinaemia patients. A rational explanation for these different specificities is proposed through modelling of candidate binding pockets and is supported by NMR spectroscopy.


The EMBO Journal | 1996

The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth.

Sally J. Leevers; David Weinkove; Lindsay K. MacDougall; Ernst Hafen; Michael D. Waterfield

Phosphoinositide 3‐kinases (PI3Ks) have been identified in an evolutionarily diverse range of organisms, including mammals, Drosophila, yeast, plants and Dictyostelium. They are activated by a multitude of extracellular signals and implicated in mitogenesis, differentiation and cell survival, as well as in the control of the cytoskeleton and cell shape. Here we describe the molecular and functional analysis of Drosophila p110 (Dp110). A full‐length Dp110 cDNA was isolated and found to encode a protein homologous throughout its length to the class I mammalian PI3Ks p110alpha and p110beta. Overexpression of Dp110 in wing or eye imaginal discs resulted in flies with enlarged wings or eyes respectively. In contrast, overexpression of Dp110 containing a mutation predicted to result in the loss of catalytic activity resulted in smaller wings and eyes. The alterations in wing size result from changes in both cell size and cell number, whereas in the eye only differences in cell size were detected. These data imply a role for Dp110 in growth control during Drosophila development and have implications for the function of class I PI3Ks in other organisms.


Cell | 1993

The GTPase dynamin binds to and is activated by a subset of SH3 domains

Ivan Gout; Ritu Dhand; Ian Hiles; Michael J. Fry; George Panayotou; Pamela Das; Oanh Truong; Nicholas F. Totty; J. Justin Hsuan; Grant W. Booker; Iain D. Campbell; Michael D. Waterfield

Src homology 3 (SH3) domains have been implicated in mediating protein-protein interactions in receptor signaling processes; however, the precise role of this domain remains unclear. In this report, affinity purification techniques were used to identify the GTPase dynamin as an SH3 domain-binding protein. Selective binding to a subset of 15 different recombinant SH3 domains occurs through proline-rich sequence motifs similar to those that mediate the interaction of the SH3 domains of Grb2 and Abl proteins to the guanine nucleotide exchange protein, Sos, and to the 3BP1 protein, respectively. Dynamin GTPase activity is stimulated by several of the bound SH3 domains, suggesting that the function of the SH3 module is not restricted to protein-protein interactions but may also include the interactive regulation of GTP-binding proteins.


The EMBO Journal | 1995

A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system.

Stefano Volinia; Ritu Dhand; Bart Vanhaesebroeck; Lindsay K. MacDougall; Robert Stein; Marketa Zvelebil; Jan Domin; Christina Panaretou; Michael D. Waterfield

Phosphoinositide (PI) 3‐kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3‐kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3‐phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3‐kinase. Here the molecular characterization of a new human PtdIns 3‐kinase with extensive sequence homology to Vps34p is described. PtdIns 3‐kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3‐kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.


Biochemical Journal | 2007

Exploring the specificity of the PI3K family inhibitor LY294002

S Gharbi; Marketa Zvelebil; Stephen J. Shuttleworth; Tim Hancox; Nahid Saghir; John F. Timms; Michael D. Waterfield

The PI3Ks (phosphatidylinositol 3-kinases) regulate cellular signalling networks that are involved in processes linked to the survival, growth, proliferation, metabolism and specialized differentiated functions of cells. The subversion of this network is common in cancer and has also been linked to disorders of inflammation. The elucidation of the physiological function of PI3K has come from pharmacological studies, which use the enzyme inhibitors Wortmannin and LY294002, and from PI3K genetic knockout models of the effects of loss of PI3K function. Several reports have shown that LY294002 is not exclusively selective for the PI3Ks, and could in fact act on other lipid kinases and additional apparently unrelated proteins. Since this inhibitor still remains a drug of choice in numerous PI3K studies (over 500 in the last year), it is important to establish the precise specificity of this compound. We report here the use of a chemical proteomic strategy in which an analogue of LY294002, PI828, was immobilized onto epoxy-activated Sepharose beads. This affinity material was then used as a bait to fish-out potential protein targets from cellular extracts. Proteins with high affinity for immobilized PI828 were separated by one-dimensional gel electrophoresis and identified by liquid chromatography-tandem MS. The present study reveals that LY294002 not only binds to class I PI3Ks and other PI3K-related kinases, but also to novel targets seemingly unrelated to the PI3K family.


Current Biology | 1999

Regulation of imaginal disc cell size, cell number and organ size by Drosophila class IA phosphoinositide 3-kinase and its adaptor

David Weinkove; Thomas P. Neufeld; Thomas Twardzik; Michael D. Waterfield; Sally J. Leevers

BACKGROUND Class I(A) phosphoinositide 3-kinases (PI 3-kinases) have been implicated in the regulation of several cellular processes including cell division, cell survival and protein synthesis. The size of Drosophila imaginal discs (epithelial structures that give rise to adult organs) is maintained by factors that can compensate for experimentally induced changes in these PI 3-kinase-regulated processes. Overexpression of the gene encoding the Drosophila class I(A) PI 3-kinase, Dp110, in imaginal discs, however, results in enlarged adult organs. These observations have led us to investigate the role of Dp100 and its adaptor, p60, in the control of imaginal disc cell size, cell number and organ size. RESULTS Null mutations in Dp110 and p60 were generated and used to demonstrate that they are essential genes that are autonomously required for imaginal disc cells to achieve their normal adult size. In addition, modulating Dp110 activity increases or reduces cell size in the developing imaginal disc, and does so throughout the cell cycle. The inhibition of Dp110 activity reduces the rate of increase in cell number in the imaginal discs, suggesting that Dp110 normally promotes cell division and/or cell survival. Unlike direct manipulation of cell-cycle progression, manipulation of Dp110 activity in one compartment of the disc influences the size of that compartment and the size of the disc as a whole. CONCLUSIONS We conclude that during imaginal disc development, Dp110 and p60 regulate cell size, cell number and organ size. Our results indicate that Dp110 and p60 signalling can affect growth in multiple ways, which has important implications for the function of signalling through class I(A) PI 3-kinases.

Collaboration


Dive into the Michael D. Waterfield's collaboration.

Top Co-Authors

Avatar

George Panayotou

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Marketa Zvelebil

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ian Hiles

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Stroobant

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ivan Gout

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

John F. Timms

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Stein

University College London

View shared research outputs
Top Co-Authors

Avatar

Jan Domin

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Luisa Minghetti

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge