Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Davis is active.

Publication


Featured researches published by Michael Davis.


Molecular Psychiatry | 2001

The amygdala: vigilance and emotion.

Michael Davis; P J Whalen

Here we provide a review of the animal and human literature concerning the role of the amygdala in fear conditioning, considering its potential influence over autonomic and hormonal changes, motor behavior and attentional processes. A stimulus that predicts an aversive outcome will change neural transmission in the amygdala to produce the somatic, autonomic and endocrine signs of fear, as well as increased attention to that stimulus. It is now clear that the amygdala is also involved in learning about positively valenced stimuli as well as spatial and motor learning and this review strives to integrate this additional information. A review of available studies examining the human amygdala covers both lesion and electrical stimulation studies as well as the most recent functional neuroimaging studies. Where appropriate, we attempt to integrate basic information on normal amygdala function with our current understanding of psychiatric disorders, including pathological anxiety.


Molecular Psychiatry | 2007

Mechanisms of fear extinction

Karyn M. Myers; Michael Davis

Excessive fear and anxiety are hallmarks of a variety of disabling anxiety disorders that affect millions of people throughout the world. Hence, a greater understanding of the brain mechanisms involved in the inhibition of fear and anxiety is attracting increasing interest in the research community. In the laboratory, fear inhibition most often is studied through a procedure in which a previously fear conditioned organism is exposed to a fear-eliciting cue in the absence of any aversive event. This procedure results in a decline in conditioned fear responses that is attributed to a process called fear extinction. Extensive empirical work by behavioral psychologists has revealed basic behavioral characteristics of extinction, and theoretical accounts have emphasized extinction as a form of inhibitory learning as opposed to an erasure of acquired fear. Guided by this work, neuroscientists have begun to dissect the neural mechanisms involved, including the regions in which extinction-related plasticity occurs and the cellular and molecular processes that are engaged. The present paper will cover behavioral, theoretical and neurobiological work, and will conclude with a discussion of clinical implications.


Journal of Affective Disorders | 2000

Fear and anxiety: animal models and human cognitive psychophysiology.

Peter J. Lang; Michael Davis; Arne Öhman

The aim of this paper is to explicate what is special about emotional information processing, emphasizing the neural foundations that underlie the experience and expression of fear. A functional, anatomical model of defense behavior in animals is presented and applications are described in cognitive and physiological studies of human affect. It is proposed that unpleasant emotions depend on the activation of an evolutionarily primitive subcortical circuit, including the amygdala and the neural structures to which it projects. This motivational system mediates specific autonomic (e.g., heart rate change) and somatic reflexes (e.g., startle change) that originally promoted survival in dangerous conditions. These same response patterns are illustrated in humans, as they process objective, memorial, and media stimuli. Furthermore, it is shown how variations in the neural circuit and its outputs may separately characterize cue-specific fear (as in specific phobia) and more generalized anxiety. Finally, again emphasizing links between the animal and human data, we focus on special, attentional features of emotional processing: The automaticity of fear reactions, hyper-reactivity to minimal threat-cues, and evidence that the physiological responses in fear may be independent of slower, language-based appraisal processes.


Neuron | 2002

Behavioral and neural analysis of extinction.

Karyn M. Myers; Michael Davis

The neural mechanisms by which fear is inhibited are poorly understood at the present time. Behaviorally, a conditioned fear response may be reduced in intensity through a number of means. Among the simplest of these is extinction, a form of learning characterized by a decrease in the amplitude and frequency of a conditioned response when the conditioned stimulus that elicits it is repeatedly nonreinforced. Because clinical interventions for patients suffering from fear dysregulation seek to inhibit abnormal, presumably learned fear responses, an understanding of fear extinction is likely to inform and increase the efficacy of these forms of treatment. This review considers the behavioral, cellular, and molecular literatures on extinction and presents the most recent advances in our understanding while identifying issues that require considerable further research.


Neuropsychopharmacology | 2010

Phasic vs Sustained Fear in Rats and Humans: Role of the Extended Amygdala in Fear vs Anxiety

Michael Davis; David L. Walker; Leigh Miles; Christian Grillon

Data will be reviewed using the acoustic startle reflex in rats and humans based on our attempts to operationally define fear vs anxiety. Although the symptoms of fear and anxiety are very similar, they also differ. Fear is a generally adaptive state of apprehension that begins rapidly and dissipates quickly once the threat is removed (phasic fear). Anxiety is elicited by less specific and less predictable threats, or by those that are physically or psychologically more distant. Thus, anxiety is a more long-lasting state of apprehension (sustained fear). Rodent studies suggest that phasic fear is mediated by the amygdala, which sends outputs to the hypothalamus and brainstem to produce symptoms of fear. Sustained fear is also mediated by the amygdala, which releases corticotropin-releasing factor, a stress hormone that acts on receptors in the bed nucleus of the stria terminalis (BNST), a part of the so-called ‘extended amygdala.’ The amygdala and BNST send outputs to the same hypothalamic and brainstem targets to produce phasic and sustained fear, respectively. In rats, sustained fear is more sensitive to anxiolytic drugs. In humans, symptoms of clinical anxiety are better detected in sustained rather than phasic fear paradigms.


Nature Neuroscience | 2001

Activation of the left amygdala to a cognitive representation of fear

Elizabeth A. Phelps; Kevin J. O'Connor; J. Christopher Gatenby; John C. Gore; Christian Grillon; Michael Davis

We examined the neural substrates involved when subjects encountered an event linked verbally, but not experientially, to an aversive outcome. This instructed fear task models a primary way humans learn about the emotional nature of events. Subjects were told that one stimulus (threat) represents an aversive event (a shock may be given), whereas another (safe) represents safety (no shock will be given). Using functional magnetic resonance imaging (fMRI), activation of the left amygdala was observed in response to threat versus safe conditions, which correlated with the expression of the fear response as measured by skin conductance. Additional activation observed in the insular cortex is proposed to be involved in conveying a cortical representation of fear to the amygdala. These results suggest that the neural substrates that support conditioned fear across species have a similar but somewhat different role in more abstract representations of fear in humans.


Trends in Neurosciences | 1994

Neurotransmission in the rat amygdala related to fear and anxiety

Michael Davis; Don Rainnie; Martin D. Cassell

An impressive amount of evidence from many different laboratories using a variety of experimental techniques indicates that the amygdala plays a crucial role in the acquisition, consolidation and retention or expression of conditioned fear. Electrophysiological data are beginning to detail the transmitters and inter-amygdala connections that transmit information to, within, and out of the amygdala. In general, treatments that increase the excitability of amygdala output neurons in the basolateral nucleus (for example, by decreasing opiate and GABA transmission, and increasing noradrenergic transmission) improve aversive conditioning, whereas treatments that decrease excitability of these neurons (by increasing opiate and GABA transmission, and decreasing NMDA and noradrenergic transmission) retard aversive conditioning as well as producing anxiolytic effects in appropriate animal tests. A better understanding of brain systems that inhibit the amygdala, as well as the role of its very high levels of peptides, might eventually lead to the development of more effective pharmacological strategies for treating clinical anxiety and memory disorders.


European Journal of Pharmacology | 2003

Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety

David L. Walker; Donna Toufexis; Michael Davis

The bed nucleus of the stria terminalis is a limbic forebrain structure that receives heavy projections from, among other areas, the basolateral amygdala, and projects in turn to hypothalamic and brainstem target areas that mediate many of the autonomic and behavioral responses to aversive or threatening stimuli. Despite its strategic anatomical position, initial attempts to implicate the bed nucleus of the stria terminalis in conditioned fear were largely unsuccessful. Recent studies have shown, however, that the bed nucleus of the stria terminalis does participate in certain types of anxiety and stress responses. In this work, we review these findings and suggest from the emerging pattern of evidence that, although the bed nucleus of the stria terminalis may not be necessary for rapid-onset, short-duration behaviors which occur in response to specific threats, the bed nucleus of the stria terminalis may mediate slower-onset, longer-lasting responses that frequently accompany sustained threats, and that may persist even after threat termination.


Behavioural Brain Research | 1993

Fear-potentiated startle : a neural and pharmacological analysis

Michael Davis; William A. Falls; Serge Campeau; Munsoo Kim

The fear-potentiated startle paradigm has proven to be a useful system with which to analyze neural systems involved in fear and anxiety. This test measures conditioned fear by an increase in the amplitude of a simple reflex (the acoustic startle reflex) in the presence of a cue previously paired with a shock. Fear-potentiated startle is sensitive to a variety of drugs such as diazepam, morphine, and buspirone that reduce anxiety in people and can be measured reliably in humans when the eyeblink component of startle is elicited at a time when they are anticipating a shock. Electrical stimulation techniques suggest that a visual conditioned stimulus ultimately alters acoustic startle at a specific point along the acoustic startle pathway. The lateral, basolateral and central amygdaloid nuclei and the caudal branch of the ventral amygdalofugal pathway projecting to the brainstem are necessary for potentiated startle to occur. The central nucleus of the amygdala projects directly to one of the brainstem nuclei critical for startle and electrical stimulation of this nucleus increases startle amplitude. Chemical or electrolytic lesions of either the central nucleus or the lateral and basolateral nuclei of the amygdala block the expression of fear-potentiated startle. The perirhinal cortex, which projects directly to the lateral and basolateral amygdaloid nuclei, plays a critical role in the expression of fear-potentiated startle using either visual or auditory conditioned stimuli. These latter amygdaloid nuclei may actually be the site of plasticity for fear conditioning, because local infusion of the NMDA antagonist AP5 into these nuclei blocks the acquisition of fear-potentiated startle. On the other hand, the expression of fear-potentiated startle is blocked by local infusion of the non-NMDA ionotropic antagonist CNQX or the G-protein inactivating toxin, pertussis toxin, but not by AP5. Finally, we have begun to investigate brain systems that might be involved in the inhibition of fear. Local infusion of AP5 into the amygdala was found to block the acquisition of experimental extinction, a prototypical method for reducing fear. We have also established a reliable procedure for producing both external and conditioned inhibition of fear-potentiated startle and hope to eventually understand the neural systems involved in these phenomena.


The Journal of Neuroscience | 1992

Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala

William A. Falls; Mindy J.D. Miserendino; Michael Davis

Data derived from in vitro preparations indicate that NMDA receptors play a critical role in synaptic plasticity in the CNS. More recently, in vivo pharmacological manipulations have suggested that an NMDA- dependent process may be involved in specific forms of behavioral plasticity. All of the work thus far has focused on the possible role of NMDA receptors in the acquisition of responses. However, there are many examples in the behavioral literature of learning-induced changes that involve the reduction or elimination of a previously acquired response. Experimental extinction is a primary example of the elimination of a learned response. Experimental extinction is well described in the behavioral literature, but has not received the same attention in the neurobiological literature. As a result, the neural mechanisms that underlie this important form of learning are not at all understood. In the present experiments, the fear-potentiated startle paradigm was employed to begin to investigate neural mechanisms of extinction. The results show that infusion of the NMDA antagonist D,L-2- amino-5-phosphonovaleric acid (AP5) into the amygdala, a limbic structure known to be important for fear conditioning, dose-dependently blocked extinction of conditioned fear. Control experiments showed that the blockade of extinction was neither the result of the permanent disruption of amygdaloid function nor the result of decreased sensitivity of the animals to the conditioned stimulus. Infusion of AP5 into the interpositus nucleus of the cerebellum, a control site, did not block extinction. Finally, intra-amygdala infusion of a selected dose of the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione did not block extinction of conditioned fear. These results, together with a previous report from our laboratory (Miserendino et al., 1990), demonstrate the importance of the amygdala in the elaboration of conditioned fear and suggest that an NMDA-dependent process might underlie the extinction of conditioned fear.

Collaboration


Dive into the Michael Davis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Campeau

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milton E. Brown

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge