Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Donovan is active.

Publication


Featured researches published by Michael Donovan.


Nature Communications | 2013

Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

Xiaoming Wang; Rafal Zgadzaj; Neil Fazel; Zhengyan Li; S. A. Yi; Xi Zhang; Watson Henderson; Yen-Yu Chang; R. Korzekwa; Hai-En Tsai; Chih-Hao Pai; H. J. Quevedo; G. Dyer; E. Gaul; Mikael Martinez; Aaron Bernstein; Teddy Borger; M. Spinks; Michael Donovan; Vladimir Khudik; Gennady Shvets; T. Ditmire; M. C. Downer

Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy.


Scientific Reports | 2015

High e+/e– ratio dense pair creation with 1021W.cm–2 laser irradiating solid targets

Edison P. Liang; Taylor Clarke; Alexander Henderson; Wen Fu; W. Lo; Devin Taylor; Petr Chaguine; Shaochuan Zhou; Y. Hua; X. Cen; Xin Wang; J. Kao; H. Hasson; G. Dyer; Kristina Serratto; Nathan Riley; Michael Donovan; T. Ditmire

We report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm−2 and pulse durations as short as ~130 fs. Positron to electron (e+/e−) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e− ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e− approaching 100% and pair skin depth ≪ pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.


Journal of Plasma Physics | 2012

Self-injected petawatt laser-driven plasma electron acceleration in 10 17 cm −3 plasma

Xiaohan Wang; Rafal Zgadzaj; S. A. Yi; Vladimir Khudik; Watson Henderson; Neil Fazel; Yen-Yu Chang; R. Korzekwa; Hai-En Tsai; Chih-Hao Pai; Zhengyan Li; E. Gaul; Mikael Martinez; G. Dyer; H. J. Quevedo; Aaron Bernstein; Michael Donovan; Gennady Shvets; T. Ditmire; M. C. Downer

We report observation of electron self-injection and acceleration in a plasma accelerator driven by the Texas petawatt laser at 10<sup>17</sup> cm<sup>−3</sup> plasma density, an order of magnitude lower density than previous self-injected laser-plasma accelerators.


Physics of Plasmas | 2013

Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

W. Bang; G. Dyer; H. J. Quevedo; Aaron Bernstein; E. Gaul; J. Rougk; Franki Aymond; Michael Donovan; T. Ditmire

We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm3) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 106 and 1.6 × 107 neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.


Physical Review E | 2013

Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

W. Bang; M. Barbui; A. Bonasera; H. J. Quevedo; G. Dyer; Aaron Bernstein; K. Hagel; K. Schmidt; E. Gaul; Michael Donovan; F. Consoli; R. De Angelis; P. Andreoli; M. Barbarino; S. Kimura; M. Mazzocco; Joseph Natowitz; T. Ditmire

We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.


International Journal of Modern Physics E-nuclear Physics | 2016

Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

M. Barbarino; M. Warrens; A. Bonasera; D. Lattuada; W. Bang; H. J. Quevedo; F. Consoli; R. De Angelis; P. Andreoli; Sachie Kimura; G. Dyer; Aaron Bernstein; K. Hagel; M. Barbui; K. Schmidt; E. Gaul; Michael Donovan; Joseph Natowitz; T. Ditmire

In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser–cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell–Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d–d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.


Nuclear Fusion | 2015

Impact of pre-plasma on fast electron generation and transport from short pulse, high intensity lasers

J. Peebles; C. McGuffey; C. Krauland; L. C. Jarrott; A. Sorokovikova; M. S. Wei; J. Park; H. Chen; H.S. McLean; C. Wagner; M. Spinks; E. Gaul; G. Dyer; B. M. Hegelich; Mikael Martinez; Michael Donovan; T. Ditmire; S. I. Krasheninnikov; F. N. Beg

Previous experiments and modeling examining the impact of an underdense, pre-formed plasma in laser-plasma interactions have shown that the fast electrons are generated with energies higher than predicted by ponderomotive scaling [4, 3–14]. We report on experiments using the Texas Petawatt high intensity (150 fs, 1.5 × 1020 W cm−2) laser pulse, which were conducted to examine the mechanism for accelerating these high energy electrons. These experiments gauge the impact a controlled low density pre-formed plasma has on electron generation with a shorter time scale than previous experiments, 150–180 fs. Electron temperatures measured via magnetic spectrometer on experiment were found to be independent of preformed plasma. Supplemental computational results using 1D PIC simulations predict that super-ponderomotive electrons are generated inside a potential well in the pre-plasma [1]. However, while the potential well is established around 150 fs, the electrons require at least an additional 50 fs to be trapped and heated inside it.


Chinese Optics Letters | 2014

Full-aperture backscatter diagnostics and applications at the Texas Petawatt Laser facility

Chunhua Wang; Craig Wagner; G. Dyer; E. Gaul; N. Kandadai; N. Riley; D. Kuk; E. McCary; A. Meadows; I. Pomerantz; M. Spinks; Teddy Borger; Aaron Bernstein; Michael Donovan; Mikael Martinez; T. Ditmire; B. M. Hegelich

In this paper, we present the development and application of a full-aperture backscatter diagnostics system at the Texas Petawatt Laser (TPW) facility. The diagnostic system includes three independent diagnostic stations. With this system, we obtained TPW on-shot focus properties, and high-harmonic spectral emission from solid foils (e.g., Cu and Al) and their Si substrate in an experiment to study laser hole boring, which show the hole-boring mechanism at relativistic intensities. The measured on-target full-power focal spots from ultrathin film targets help determine the optimum target thickness at certain laser contrast parameters for particle acceleration and neutron generation experiment, which is also a relative measurement of shot-toshot intensity fluctuations.


11th International Conference on Nucleus-Nucleus Collisions, NN 2012 | 2013

Study of the yield of D-D, D-3He fusion reactions produced by the interaction of intense ultrafast laser pulses with molecular clusters

M. Barbui; W. Bang; A. Bonasera; K. Hagel; K. Schmidt; Joseph Natowitz; Gianluca Giuliani; M. Barbarino; G. Dyer; H. J. Quevedo; E. Gaul; Ted Borger; Aaron Bernstein; Mikael Martinez; Michael Donovan; T. Ditmire; Sachie Kimura; M. Mazzocco; F. Consoli; Riccardo De Angelis; P. Andreoli

The interaction of intense ultrafast laser pulses with molecular clusters produces a Coulomb explosion of the clusters. In this process, the positive ions from the clusters might gain enough kinetic energy to drive nuclear reactions. An experiment to measure the yield of D-D and D-3He fusion reactions was performed at University of Texas Center for High Intensity Laser Science. Laser pulses of energy ranging from 100 to 180 J and duration 150fs were delivered by the Petawatt laser. The temperature of the energetic deuterium ions was measured using a Faraday cup, whereas the yields of the D-D reactions were measured by detecting the characteristic 2.45 MeV neutrons and 3.02 MeV protons. In order to allow the simultaneous measurement of 3He(D,p)4He and D-D reactions, different concentrations of D2 and 3He or CD4 and 3He were mixed in the gas jet target. The 2.45 MeV neutrons from the D(D,n)3He reaction were detecteded as well as the 14.7 MeV protons from the 3He(D,p)4He reaction. The preliminary results will be shown.


Proceedings of SPIE | 2015

Laser generation of ultra-short neutron bursts from high atomic number converters

Ishay Pomerantz; E. McCary; A. Meadows; Alexey Arefiev; Aaron Bernstein; C. Chester; Jose Cortez; Michael Donovan; G. Dyer; E. Gaul; David Hamilton; D. Kuk; A. C. Lestrade; Cheng Wang; T. Ditmire; B. M. Hegelich

At the Texas Petawatt laser facility we developed a novel ultra-short pulsed laser-driven neutron source generating an unprecedented output peak flux. Our results show a dramatic onset of high-energy electron generation from petawatt laser-irradiated plastic targets for targets thinner than a few microns. In this regime, the copious amounts of multi-MeV electrons emitted from the target are utilized to generate photo-neutrons from a metal converter. The neutrons are generated with a <50 ps pulse duration and a flux of 1018 n/cm2/s, exceeding any other pulsed or CW neutron source. In this paper, we will report on our measurement of the neutron yields produced from high atomic number converters.

Collaboration


Dive into the Michael Donovan's collaboration.

Top Co-Authors

Avatar

T. Ditmire

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

G. Dyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

E. Gaul

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Aaron Bernstein

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Mikael Martinez

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

H. J. Quevedo

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

M. Spinks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

W. Bang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

M. C. Downer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Watson Henderson

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge