Michael Duszenko
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Duszenko.
Science | 2013
Karol Nass; Daniel P. DePonte; Thomas A. White; Dirk Rehders; Anton Barty; Francesco Stellato; Mengning Liang; Thomas R. M. Barends; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt; M. Marvin Seibert; Andrew Aquila; David Arnlund; Sasa Bajt; Torsten Barth; Michael J. Bogan; Carl Caleman; Tzu Chiao Chao; R. Bruce Doak; Holger Fleckenstein; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Linda C. Johansson; Stephan Kassemeyer; Gergely Katona; Richard A. Kirian
Diffraction Before Destruction A bottleneck in x-ray crystallography is the growth of well-ordered crystals large enough to obtain high-resolution diffraction data within an exposure that limits radiation damage. Serial femtosecond crystallography promises to overcome these constraints by using short intense pulses that out-run radiation damage. A stream of crystals is flowed across the free-electron beam and for each pulse, diffraction data is recorded from a single crystal before it is destroyed. Redecke et al. (p. 227, published online 29 November; see the Perspective by Helliwell) used this technique to determine the structure of an enzyme from Trypanosoma brucei, the parasite that causes sleeping sickness, from micron-sized crystals grown within insect cells. The structure shows how this enzyme, which is involved in degradation of host proteins, is natively inhibited prior to activation, which could help in the development of parasite-specific inhibitors. In vivo crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease. [Also see Perspective by Helliwell] The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
Journal of Experimental Medicine | 2005
Holger K. Eltzschig; Parween Abdulla; Edgar Hoffman; Kathryn E. Hamilton; Dionne Daniels; Caroline Schönfeld; Michaela Löffler; German Reyes; Michael Duszenko; Jörn Karhausen; Andreas Robinson; Karen A. Westerman; Imogen R. Coe; Sean P. Colgan
Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling. Initial studies indicated that the half-life of Ado was increased by as much as fivefold after exposure of endothelia to hypoxia. Examination of expressional levels of the equilibrative nucleoside transporter (ENT)1 and ENT2 revealed a transcriptionally dependent decrease in mRNA, protein, and function in endothelia and epithelia. Examination of the ENT1 promoter identified a hypoxia inducible factor 1 (HIF-1)–dependent repression of ENT1 during hypoxia. Using in vitro and in vivo models of Ado signaling, we revealed that decreased Ado uptake promotes vascular barrier and dampens neutrophil tissue accumulation during hypoxia. Moreover, epithelial Hif1 α mutant animals displayed increased epithelial ENT1 expression. Together, these results identify transcriptional repression of ENT as an innate mechanism to elevate extracellular Ado during hypoxia.
Nature Methods | 2012
Rudolf Koopmann; Karolina Cupelli; Karol Nass; Daniel P. DePonte; Thomas A. White; Francesco Stellato; Dirk Rehders; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; Sébastien Boutet; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; R. Bruce Doak; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton
Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
FEBS Letters | 2002
Alexander Szallies; Bruno Kilunga Kubata; Michael Duszenko
Metacaspases constitute a new group of cysteine proteases homologous to caspases. Heterologous expression of Trypanosoma brucei metacaspase TbMCA4 in the budding yeast Saccharomyces cerevisiae resulted in growth inhibition, mitochondrial dysfunction and clonal death. The metacaspase orthologue of yeast, ScMCA1 (YOR197w), exhibited genetic interaction with WWM1 (YFL010c), which encodes a small WW domain protein. WWM1 overexpression resulted in growth arrest and clonal death, which was suppressed by concomitant overexpression of ScMCA1. GFP‐fusion reporters of WWM1, ScMCA1 and TbMCA4 localized to the nucleus. Taken together, we suggest that metacaspases may play a role in nuclear function controlling cellular proliferation coupled to mitochondrial biogenesis.
IUCrJ | 2014
Cornelius Gati; Gleb Bourenkov; Marco Klinge; Dirk Rehders; Francesco Stellato; Dominik Oberthür; Oleksandr Yefanov; Benjamin Philip Sommer; Stefan Mogk; Michael Duszenko; Christian Betzel; Thomas R. Schneider; Henry N. Chapman
The structure solution of T. brucei cathepsin B from 80 in vivo grown crystals with an average volume of 9 µm3 obtained by serial synchrotron crystallography at a microfocus beamline is reported.
British Journal of Haematology | 2012
Mehrdad Ghashghaeinia; Judith C. A. Cluitmans; Ahmed Akel; Peter Dreischer; Mahmoud Toulany; Martin Köberle; Yuliya Skabytska; Mohammad Saki; Tilo Biedermann; Michael Duszenko; Florian Lang; Thomas Wieder; G.J.C.G.M. Bosman
Mature, circulating erythrocytes undergo senescence, which limits their life span to approximately 120 d. Upon injury, erythrocytes may undergo suicidal erythrocyte death or eryptosis, which may accelerate senescence and shorten their survival. Eryptosis is defined as cell shrinkage and exposure of phosphatidylserine at the cell surface. Triggers of eryptosis include oxidative stress. The present study addresses the impact of erythrocyte age on the relative susceptibility to eryptosis. Erythrocytes were separated into five fractions, based on age‐associated differences in density and volume. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, the cell volume from forward scatter, and the Ca2+ level from Fluo‐3‐dependent fluorescence. In addition, glutathione (GSH) concentrations were measured by an enzymatic/colourimetric method. After 48 h incubation in Ringer solution, Annexin V binding increased significantly with erythrocyte age. The differences were not accompanied by altered GSH concentrations, but were reversed by addition of the antioxidant N‐acetyl‐l‐cysteine in vitro. Also, N‐acetyl‐l‐cysteine significantly prolonged the half‐life of circulating mouse erythrocytes in vivo. Thus, the susceptibility to eryptosis increases with the age of the erythrocytes, and this effect is at least partially due to enhanced sensitivity to oxidative stress.
Autophagy | 2011
Michael Duszenko; Michael L. Ginger; Ana Brennand; Melisa Gualdrón-López; María I. Colombo; Graham H. Coombs; Isabelle Coppens; Bamini Jayabalasingham; Gordon Langsley; Solange L. de Castro; Rubem F. S. Menna-Barreto; Jeremy C. Mottram; Miguel Navarro; Daniel J. Rigden; Patricia S. Romano; Veronika Stoka; Boris Turk; Paul A. M. Michels
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Molecular and Biochemical Parasitology | 1995
Friedemann Hesse; Paul M. Selzer; Kerstin Mühlstädt; Michael Duszenko
We used an axenic cultivation system to grow African trypanosomes in vitro. Long-term cultivation for more than 60 days has been achieved by replacing the culture medium at regular intervals between 6 and 48 h. In contrast to a control culture without medium replacement, increasing amounts of maximum cell concentrations have been obtained, ranging from 5 x 10(6) to 2 x 10(7) trypanosomes ml-1, whereas the generation doubling time remained constant (about 6 h). Higher cell concentrations have only been obtained by total medium replacement; neither addition of fresh medium nor serum led to a higher cell yield, suggesting that a trypanosome-derived factor or metabolite accumulated in the medium rather than medium was depleted of an essential nutrient. Most interestingly, however, successive waves have been obtained which eventually led to a damped oscillation curve with a constant high population density after about 40 days of cultivation. Cultures were started with a homogeneous population of the long-slender form. As judged by light microscopy, cells showed a stumpy morphology during the declining phase and became slender again in the following growth phase. At later time points, when cells remained in a stationary phase at high population density, many different morphological stages have been observed, similar to those described by early authors as intermediate forms [Ormerod, W. E. (1979) In: Biology of the Kinetoplastida, Vol. 2, pp. 340-393], although many dividing forms are still present at that time. In contrast, identically treated procyclic cultures were unable to produce cyclic growth waves. Based on these results, a novel concept considering a possible differentiation mechanism is discussed.
Journal of Immunology | 2008
Nicole Matzner; Irina M. Zemtsova; Nguyen Thi Xuan; Michael Duszenko; Ekaterina Shumilina; Florian Lang
Ca2+-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca2+]i upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca2+]i, which was due to Ca2+ release from intracellular stores and influx of extracellular Ca2+ across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca2+ release-activated Ca2+ channels (CRAC). These currents were highly selective for Ca2+, exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca2+-dependent inactivation. In addition, the LPS-induced increase of [Ca2+]i was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K+ (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-α and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the ICRAC inhibitor SKF-96365. Taken together, our results demonstrate that Ca2+ influx in LPS-stimulated DCs occurs via Ca2+ release-activated Ca2+ channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions.
Journal of Experimental Medicine | 2000
Bruno Kilunga Kubata; Michael Duszenko; Zakayi Kabututu; Marc Rawer; Alexander Szallies; Ko Fujimori; Takashi Inui; Tomoyoshi Nozaki; Kouwa Yamashita; Toshihiro Horii; Yoshihiro Urade; Osamu Hayaishi
Members of the genus Trypanosoma cause African trypanosomiasis in humans and animals in Africa. Infection of mammals by African trypanosomes is characterized by an upregulation of prostaglandin (PG) production in the plasma and cerebrospinal fluid. These metabolites of arachidonic acid (AA) may, in part, be responsible for symptoms such as fever, headache, immunosuppression, deep muscle hyperaesthesia, miscarriage, ovarian dysfunction, sleepiness, and other symptoms observed in patients with chronic African trypanosomiasis. Here, we show that the protozoan parasite T. brucei is involved in PG production and that it produces PGs enzymatically from AA and its metabolite, PGH2. Among all PGs synthesized, PGF2α was the major prostanoid produced by trypanosome lysates. We have purified a novel T. brucei PGF2α synthase (TbPGFS) and cloned its cDNA. Phylogenetic analysis and molecular properties revealed that TbPGFS is completely distinct from mammalian PGF synthases. We also found that TbPGFS mRNA expression and TbPGFS activity were high in the early logarithmic growth phase and low during the stationary phase. The characterization of TbPGFS and its gene in T. brucei provides a basis for the molecular analysis of the role of parasite-derived PGF2α in the physiology of the parasite and the pathogenesis of African trypanosomiasis.