Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Percival is active.

Publication


Featured researches published by Michael E. Percival.


Obesity | 2013

Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women

Jenna B. Gillen; Michael E. Percival; Alison Ludzki; Mark A. Tarnopolsky; Martin J. Gibala

To investigate the effects of low‐volume high‐intensity interval training (HIT) performed in the fasted (FAST) versus fed (FED) state on body composition, muscle oxidative capacity, and glycemic control in overweight/obese women.


PLOS ONE | 2014

Three Minutes of All-Out Intermittent Exercise per Week Increases Skeletal Muscle Oxidative Capacity and Improves Cardiometabolic Health

Jenna B. Gillen; Michael E. Percival; Lauren E. Skelly; Brian J. Martin; Rachel B. Tan; Mark A. Tarnopolsky; Martin J. Gibala

We investigated whether a training protocol that involved 3 min of intense intermittent exercise per week — within a total training time commitment of 30 min including warm up and cool down — could increase skeletal muscle oxidative capacity and markers of health status. Overweight/obese but otherwise healthy men and women (n = 7 each; age  = 29±9 y; BMI  = 29.8±2.7 kg/m2) performed 18 training sessions over 6 wk on a cycle ergometer. Each session began with a 2 min warm-up at 50 W, followed by 3×20 s “all-out” sprints against 5.0% body mass (mean power output: ∼450–500 W) interspersed with 2 min of recovery at 50 W, followed by a 3 min cool-down at 50 W. Peak oxygen uptake increased by 12% after training (32.6±4.5 vs. 29.1±4.2 ml/kg/min) and resting mean arterial pressure decreased by 7% (78±10 vs. 83±10 mmHg), with no difference between groups (both p<0.01, main effects for time). Skeletal muscle biopsy samples obtained before and 72 h after training revealed increased maximal activity of citrate synthase and protein content of cytochrome oxidase 4 (p<0.01, main effect), while the maximal activity of β-hydroxy acyl CoA dehydrogenase increased in men only (p<0.05). Continuous glucose monitoring measured under standard dietary conditions before and 48–72 h following training revealed lower 24 h average blood glucose concentration in men following training (5.4±0.6 vs. 5.9±0.5 mmol/L, p<0.05), but not women (5.5±0.4 vs. 5.5±0.6 mmol/L). This was associated with a greater increase in GLUT4 protein content in men compared to women (138% vs. 23%, p<0.05). Short-term interval training using a 10 min protocol that involved only 1 min of hard exercise, 3x/wk, stimulated physiological changes linked to improved health in overweight adults. Despite the small sample size, potential sex-specific adaptations were apparent that warrant further investigation.


Applied Physiology, Nutrition, and Metabolism | 2014

High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment

Lauren E. Skelly; Patricia C. Andrews; Jenna B. Gillen; Brian J. Martin; Michael E. Percival; Martin J. Gibala

Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment.


Experimental Physiology | 2014

Intermittent and continuous high‐intensity exercise training induce similar acute but different chronic muscle adaptations

Andrew J. R. Cochran; Michael E. Percival; Steven Tricarico; Jonathan P. Little; Naomi M. Cermak; Jenna B. Gillen; Mark A. Tarnopolsky; Martin J. Gibala

What is the central question of this study? How important is the interval in high‐intensity interval training (HIIT)? What is the main finding and its importance? The intermittent nature of HIIT is important for maximizing skeletal muscle adaptations to this type of exercise, at least when a relatively small total volume of work is performed in an ‘all‐out’ manner. The protein signalling responses to an acute bout of HIIT were generally not predictive of training‐induced outcomes. Nonetheless, a single session of exercise lasting <10 min including warm‐up, performed three times per week for 6 weeks, was sufficient to improve maximal aerobic capacity.


Reproductive Sciences | 2014

Trophoblast invasion and blood vessel remodeling are altered in a rat model of lifelong maternal obesity.

Emily K. Hayes; Daniel Tessier; Michael E. Percival; Alison C. Holloway; James J. Petrik; Andrée Gruslin; Sandeep Raha

Maternal obesity is associated with an increased risk of a number of pregnancy complications, including fetal demise, which may be linked to impaired placental development as a result of altered trophoblast invasion and vessel remodeling. Therefore, we examined these parameters in pregnant rats fed a control (normal weight) or high fat (HF) diet (obese) at 2 critical times of rat placental development. Early trophoblast invasion was increased by approximately 2-fold in HF-fed dams with a concomitant increase in the expression of matrix metalloproteinase 9 protein, a mediator of tissue remodeling and invasion. Furthermore, we observed significantly higher levels of smooth muscle actin surrounding the placental spiral arteries of HF-fed dams, suggesting impaired spiral artery remodeling. Taken together, the results of this study suggest that altered placental development is an important contributor to the poor pregnancy outcomes and increased fetal demise in our model of lifelong maternal obesity.


Journal of Applied Physiology | 2015

Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle

Michael E. Percival; Brian J. Martin; Jenna B. Gillen; Lauren E. Skelly; Martin J. MacInnis; Alex E. Green; Mark A. Tarnopolsky; Martin J. Gibala

We tested the hypothesis that ingestion of sodium bicarbonate (NaHCO3) prior to an acute session of high-intensity interval training (HIIT) would augment signaling cascades and gene expression linked to mitochondrial biogenesis in human skeletal muscle. On two occasions separated by ∼1 wk, nine men (mean ± SD: age 22 ± 2 yr, weight 78 ± 13 kg, V̇O(2 peak) 48 ± 8 ml·kg(-1)·min(-1)) performed 10 × 60-s cycling efforts at an intensity eliciting ∼90% of maximal heart rate (263 ± 40 W), interspersed with 60 s of recovery. In a double-blind, crossover manner, subjects ingested a total of 0.4 g/kg body weight NaHCO3 before exercise (BICARB) or an equimolar amount of a placebo, sodium chloride (PLAC). Venous blood bicarbonate and pH were elevated at all time points after ingestion (P < 0.05) in BICARB vs. PLAC. During exercise, muscle glycogen utilization (126 ± 47 vs. 53 ± 38 mmol/kg dry weight, P < 0.05) and blood lactate accumulation (12.8 ± 2.6 vs. 10.5 ± 2.8 mmol/liter, P < 0.05) were greater in BICARB vs. PLAC. The acute exercise-induced increase in the phosphorylation of acetyl-CoA carboxylase, a downstream marker of AMP-activated protein kinase activity, and p38 mitogen-activated protein kinase were similar between treatments (P > 0.05). However, the increase in PGC-1α mRNA expression after 3 h of recovery was higher in BICARB vs. PLAC (approximately sevenfold vs. fivefold compared with rest, P < 0.05). We conclude that NaHCO3 before HIIT alters the mRNA expression of this key regulatory protein associated with mitochondrial biogenesis. The elevated PGC-1α mRNA response provides a putative mechanism to explain the enhanced mitochondrial adaptation observed after chronic HIIT supplemented with NaHCO3 in rats.


International Journal of Sport Nutrition and Exercise Metabolism | 2014

No Effect of Short-Term Green Tea Extract Supplementation on Metabolism at Rest or During Exercise in the Fed State

Brian J. Martin; Rachel B. Tan; Jenna B. Gillen; Michael E. Percival; Martin J. Gibala

UNLABELLED Supplementation with green tea extract (GTE) in animals has been reported to induce numerous metabolic adaptations including increased fat oxidation during exercise and improved performance. However, data regarding the metabolic and physiological effects of GTE during exercise in humans are limited and equivocal. PURPOSE To examine the effects of short-term GTE treatment on resting energy expenditure (REE), wholebody substrate utilization during exercise and time trial performance. METHODS Fifteen active men (24 ± 3 y; VO(2)peak = 48 ± 7 ml · kg · min(-1); BMI = 26 ± 3 kg · m(2)((-1))) ingested GTE (3x per day = 1,000 mg/d) or placebo (PLA) for 2 day in a double-blind, crossover design (each separated by a 1 week wash-out period). REE was assessed in the fasted state. Subjects then ingested a standardized breakfast (~5.0 kcal · kg(-1)) and 90 min later performed a 60 min cycling bout at an intensity corresponding to individual maximal fat oxidation (44 ± 11% VO(2)peak), followed by a 250 kJ TT. RESULTS REE, whole-body oxygen consumption (VO2) and substrate oxidation rates during steady-state exercise were not different between treatments. However, mean heart rate (HR) was lower in GTE vs. PLA (115 ± 16 vs. 118 ± 17 beats · min(-1); main effect, p = .049). Mixed venous blood [glycerol] was higher during rest and exercise after GTE vs. PLA (p = .006, main effect for treatment) but glucose, insulin and free-fatty acids were not different. Subsequent time trial performance was not different between treatments (GTE = 25:38 ± 5:32 vs. PLA = 26:08 ± 8:13 min; p = .75). CONCLUSION GTE had minimal effects on whole-body substrate metabolism but significantly increased plasma glycerol and lowered heart rate during steady-state exercise, suggesting a potential increase in lipolysis and a cardiovascular effect that warrants further investigation.


International Journal of Sport Nutrition and Exercise Metabolism | 2015

β-Alanine Supplementation Does Not Augment the Skeletal Muscle Adaptive Response to 6 Weeks of Sprint Interval Training

Andrew J. R. Cochran; Michael E. Percival; Sara Thompson; Jenna B. Gillen; Martin J. MacInnis; Murray Potter; Mark A. Tarnopolsky; Martin J. Gibala

Sprint interval training (SIT), repeated bouts of high-intensity exercise, improves skeletal muscle oxidative capacity and exercise performance. β-alanine (β-ALA) supplementation has been shown to enhance exercise performance, which led us to hypothesize that chronic β-ALA supplementation would augment work capacity during SIT and augment training-induced adaptations in skeletal muscle and performance. Twenty-four active but untrained men (23 ± 2 yr; VO2peak = 50 ± 6 mL · kg(-1) · min(-1)) ingested 3.2 g/day of β-ALA or a placebo (PLA) for a total of 10 weeks (n = 12 per group). Following 4 weeks of baseline supplementation, participants completed a 6-week SIT intervention. Each of 3 weekly sessions consisted of 4-6 Wingate tests, i.e., 30-s bouts of maximal cycling, interspersed with 4 min of recovery. Before and after the 6-week SIT program, participants completed a 250-kJ time trial and a repeated sprint test. Biopsies (v. lateralis) revealed that skeletal muscle carnosine content increased by 33% and 52%, respectively, after 4 and 10 weeks of β-ALA supplementation, but was unchanged in PLA. Total work performed during each training session was similar across treatments. SIT increased markers of mitochondrial content, including cytochome c oxidase (40%) and β-hydroxyacyl-CoA dehydrogenase maximal activities (19%), as well as VO2peak (9%), repeated-sprint capacity (5%), and 250-kJ time trial performance (13%), but there were no differences between treatments for any measure (p < .01, main effects for time; p > .05, interaction effects). The training stimulus may have overwhelmed any potential influence of β-ALA, or the supplementation protocol was insufficient to alter the variables to a detectable extent.


Sports Medicine | 2014

Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex.

Martin J. Gibala; Jenna B. Gillen; Michael E. Percival


International Journal of Sport Nutrition and Exercise Metabolism | 2015

Manipulating carbohydrate availability between twice-daily sessions of high-intensity interval training over 2 weeks improves time-trial performance

Andrew J. R. Cochran; Frank Myslik; Martin J. MacInnis; Michael E. Percival; David Bishop; Mark A. Tarnopolsky; Martin J. Gibala

Collaboration


Dive into the Michael E. Percival's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge