Michael E. Rothenberg
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael E. Rothenberg.
Nature Biotechnology | 2011
Piero Dalerba; Tomer Kalisky; Debashis Sahoo; Pradeep S. Rajendran; Michael E. Rothenberg; Anne A. Leyrat; Sopheak Sim; Jennifer Okamoto; Darius M. Johnston; Dalong Qian; Maider Zabala; Janet Bueno; Norma F. Neff; Jianbin Wang; Andrew A. Shelton; Brendan C. Visser; Shigeo Hisamori; Yohei Shimono; Marc van de Wetering; Hans Clevers; Michael F. Clarke; Stephen R. Quake
Cancer is often viewed as a caricature of normal developmental processes, but the extent to which its cellular heterogeneity truly recapitulates multilineage differentiation processes of normal tissues remains unknown. Here we implement single-cell PCR gene-expression analysis to dissect the cellular composition of primary human normal colon and colon cancer epithelia. We show that human colon cancer tissues contain distinct cell populations whose transcriptional identities mirror those of the different cellular lineages of normal colon. By creating monoclonal tumor xenografts from injection of a single (n = 1) cell, we demonstrate that the transcriptional diversity of cancer tissues is largely explained by in vivo multilineage differentiation and not only by clonal genetic heterogeneity. Finally, we show that the different gene-expression programs linked to multilineage differentiation are strongly associated with patient survival. We develop two-gene classifier systems (KRT20 versus CA1, MS4A12, CD177, SLC26A3) that predict clinical outcomes with hazard ratios superior to those of pathological grade and comparable to those of microarray-derived multigene expression signatures.
Nature Methods | 2014
Angela Ruohao Wu; Norma F. Neff; Tomer Kalisky; Piero Dalerba; Barbara Treutlein; Michael E. Rothenberg; Francis M. Mburu; Gary L. Mantalas; Sopheak Sim; Michael F. Clarke; Stephen R. Quake
Interest in single-cell whole-transcriptome analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. We compared commercially available single-cell RNA amplification methods with both microliter and nanoliter volumes, using sequence from bulk total RNA and multiplexed quantitative PCR as benchmarks to systematically evaluate the sensitivity and accuracy of various single-cell RNA-seq approaches. We show that single-cell RNA-seq can be used to perform accurate quantitative transcriptome measurement in individual cells with a relatively small number of sequencing reads and that sequencing large numbers of single cells can recapitulate bulk transcriptome complexity.
Cell | 1998
Bingwei Lu; Michael E. Rothenberg; Lily Yeh Jan; Yuh Nung Jan
During mitosis of multiple types of precursor cells in Drosophila, Numb is asymmetrically distributed between the two daughter cells and confers distinct daughter cell fates. Here we report the identification of a novel gene product, Partner of Numb (PON), based on its physical interaction with Numb. PON is asymmetrically localized during mitosis and colocalizes with Numb. Loss of pon function disrupts Numb localization in muscle progenitors and delays Numb crescent formation in neural precursors. Moreover, ectopically expressed PON responds to the apical-basal polarity of epithelial cells and is sufficient to localize Numb basally. We propose that PON is one component of a multimolecular machinery that localizes Numb by responding to polarity cues conserved in neural precursors and epithelial cells.
Gastroenterology | 2012
Michael E. Rothenberg; Ysbrand Nusse; Tomer Kalisky; John J. Lee; Piero Dalerba; Ferenc A. Scheeren; Neethan Lobo; Subhash Kulkarni; Sopheak Sim; Dalong Qian; Philip A. Beachy; Pankaj J. Pasricha; Stephen R. Quake; Michael F. Clarke
BACKGROUND & AIMS Paneth cells contribute to the small intestinal niche of Lgr5(+) stem cells. Although the colon also contains Lgr5(+) stem cells, it does not contain Paneth cells. We investigated the existence of colonic Paneth-like cells that have a distinct transcriptional signature and support Lgr5(+) stem cells. METHODS We used multicolor fluorescence-activated cell sorting to isolate different subregions of colon crypts, based on known markers, from dissociated colonic epithelium of mice. We performed multiplexed single-cell gene expression analysis with quantitative reverse transcriptase polymerase chain reaction followed by hierarchical clustering analysis to characterize distinct cell types. We used immunostaining and fluorescence-activated cell sorting analyses with in vivo administration of a Notch inhibitor and in vitro organoid cultures to characterize different cell types. RESULTS Multicolor fluorescence-activated cell sorting could isolate distinct regions of colonic crypts. Four major epithelial subtypes or transcriptional states were revealed by gene expression analysis of selected populations of single cells. One of these, the goblet cells, contained a distinct cKit/CD117(+) crypt base subpopulation that expressed Dll1, Dll4, and epidermal growth factor, similar to Paneth cells, which were also marked by cKit. In the colon, cKit(+) goblet cells were interdigitated with Lgr5(+) stem cells. In vivo, this colonic cKit(+) population was regulated by Notch signaling; administration of a γ-secretase inhibitor to mice increased the number of cKit(+) cells. When isolated from mouse colon, cKit(+) cells promoted formation of organoids from Lgr5(+) stem cells, which expressed Kitl/stem cell factor, the ligand for cKit. When organoids were depleted of cKit(+) cells using a toxin-conjugated antibody, organoid formation decreased. CONCLUSIONS cKit marks small intestinal Paneth cells and a subset of colonic goblet cells that are regulated by Notch signaling and support Lgr5(+) stem cells.
Gastroenterology | 2015
Michael Sigal; Michael E. Rothenberg; Catriona Y. Logan; Josephine Y. Lee; Ryan W. Honaker; Rachel L. Cooper; Ben Passarelli; Margarita Camorlinga; Donna M. Bouley; Guillermo Alvarez; Roel Nusse; Javier Torres; Manuel R. Amieva
BACKGROUND & AIMS Helicobacter pylori infection is the main risk factor for gastric cancer. We characterized the interactions of H pylori with gastric epithelial progenitor and stem cells in humans and mice and investigated how these interactions contribute to H pylori-induced pathology. METHODS We used quantitative confocal microscopy and 3-dimensional reconstruction of entire gastric glands to determine the localizations of H pylori in stomach tissues from humans and infected mice. Using lineage tracing to mark cells derived from leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells (Lgr5-eGFP-IRES-CreERT2/Rosa26-TdTomato mice) and in situ hybridization, we analyzed gastric stem cell responses to infection. Isogenic H pylori mutants were used to determine the role of specific virulence factors in stem cell activation and pathology. RESULTS H pylori grow as distinct bacterial microcolonies deep in the stomach glands and interact directly with gastric progenitor and stem cells in tissues from mice and humans. These gland-associated bacteria activate stem cells, increasing the number of stem cells, accelerating Lgr5(+) stem cell proliferation, and up-regulating expression of stem cell-related genes. Mutant bacteria with defects in chemotaxis that are able to colonize the stomach surface but not the antral glands in mice do not activate stem cells. In addition, bacteria that are unable to inject the contact-dependent virulence factor CagA into the epithelium colonized stomach glands in mice, but did not activate stem cells or produce hyperplasia to the same extent as wild-type H pylori. CONCLUSIONS H pylori colonize and manipulate the progenitor and stem cell compartments, which alters turnover kinetics and glandular hyperplasia. Bacterial ability to alter the stem cells has important implications for gastrointestinal stem cell biology and H pylori-induced gastric pathology.
Molecular and Cellular Biology | 1998
Cheng-ting Chien; Shuwen Wang; Michael E. Rothenberg; Lily Yeh Jan; Yuh Nung Jan
ABSTRACT During asymmetric cell division, the membrane-associated Numb protein localizes to a crescent in the mitotic progenitor and is segregated predominantly to one of the two daughter cells. We have identified a putative serine/threonine kinase, Numb-associated kinase (Nak), which interacts physically with the phosphotyrosine binding (PTB) domain of Numb. The PTB domains of Shc and insulin receptor substrate bind to an NPXY motif which is not present in the region of Nak that interacts with Numb PTB domain. We found that the Numb PTB domain but not the Shc PTB domain interacts with Nak through a peptide of 11 amino acids, implicating a novel and specific protein-protein interaction. Overexpression of Nak in the sensory organs causes both daughters of a normally asymmetric cell division to adopt the same cell fate, a transformation similar to the loss of numb function phenotype and opposite the cell fate transformation caused by overexpression of Numb. The frequency of cell fate transformation is sensitive to the numb gene dosage, as expected from the physical interaction between Nak and Numb. These findings indicate that Nak may play a role in cell fate determination during asymmetric cell divisions.
Neuron | 2003
Michael E. Rothenberg; Stephen L. Rogers; Ronald D. Vale; Lily Yeh Jan; Yuh Nung Jan
Actin and microtubules (MTs) are tightly coordinated during neuronal growth cone navigation and are dynamically regulated in response to guidance cues; however, little is known about the underlying molecular mechanisms. Here, we characterize Drosophila pod-1 (dpod1) and show that purified Dpod1 can crosslink both actin and MTs. In cultured S2 cells, Dpod1 colocalizes with lamellar actin and MTs, and overexpression remodels the cytoskeleton to promote dynamic neurite-like actin-dependent projections. Consistent with these observations, Dpod1 localizes to the tips of growing axons, regions where actin and MTs interact, and is especially abundant at navigational choice points. In either the absence or overabundance of Dpod1, growth cone targeting but not outgrowth is disrupted. Taken together, these results reveal novel activities for pod-1 and show that proper levels of Dpod1, an actin/MT crosslinker, must be maintained in the growth cone for correct axon guidance.
Nature Cell Biology | 2014
Ferenc A. Scheeren; Angera H. Kuo; Linda J. van Weele; Shang Cai; Iris Glykofridis; Shaheen S. Sikandar; Maider Zabala; Dalong Qian; Jessica Lam; Darius M. Johnston; Jens Peter Volkmer; Debashis Sahoo; Matt van de Rijn; Frederick M. Dirbas; George Somlo; Tomer Kalisky; Michael E. Rothenberg; Stephen R. Quake; Michael F. Clarke
It has been postulated that there is a link between inflammation and cancer. Here we describe a role for cell-intrinsic toll-like receptor-2 (TLR2; which is involved in inflammatory response) signalling in normal intestinal and mammary epithelial cells and oncogenesis. The downstream effectors of TLR2 are expressed by normal intestinal and mammary epithelia, including the stem/progenitor cells. Deletion of MYD88 or TLR2 in the intestinal epithelium markedly reduces DSS-induced colitis regeneration and spontaneous tumour development in mice. Limiting dilution transplantations of breast epithelial cells devoid of TLR2 or MYD88 revealed a significant decrease in mammary repopulating unit frequency compared with the control. Inhibition of TLR2, its co-receptor CD14, or its downstream targets MYD88 and IRAK1 inhibits growth of human breast cancers in vitro and in vivo. These results suggest that inhibitors of the TLR2 pathway merit investigation as possible therapeutic and chemoprevention agents.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Adrish Sen; Michael E. Rothenberg; Gourab Mukherjee; Ningguo Feng; Tomer Kalisky; Nitya Nair; Iain M. Johnstone; Michael F. Clarke; Harry B. Greenberg
“Bulk” measurements of antiviral innate immune responses from pooled cells yield averaged signals and do not reveal underlying signaling heterogeneity in infected and bystander single cells. We examined such heterogeneity in the small intestine during rotavirus (RV) infection. Murine RV EW robustly activated type I IFNs and several antiviral genes (IFN-stimulated genes) in the intestine by bulk analysis, the source of induced IFNs primarily being hematopoietic cells. Flow cytometry and microfluidics-based single-cell multiplex RT-PCR allowed dissection of IFN responses in single RV-infected and bystander intestinal epithelial cells (IECs). EW replicates in IEC subsets differing in their basal type I IFN transcription and induces IRF3-dependent and IRF3-augmented transcription, but not NF-κB–dependent or type I IFN transcripts. Bystander cells did not display enhanced type I IFN transcription but had elevated levels of certain IFN-stimulated genes, presumably in response to exogenous IFNs secreted from immune cells. Comparison of IRF3 and NF-κB induction in STAT1−/− mice revealed that murine but not simian RRV mediated accumulation of IkB-α protein and decreased transcription of NF-κB–dependent genes. RRV replication was significantly rescued in IFN types I and II, as well as STAT1 (IFN types I, II, and III) deficient mice in contrast to EW, which was only modestly sensitive to IFNs I and II. Resolution of “averaged” innate immune responses in single IECs thus revealed unexpected heterogeneity in both the induction and subversion of early host antiviral immunity, which modulated host range.
PLOS Computational Biology | 2015
Yael Korem; Pablo Szekely; Yuval Hart; Hila Sheftel; Jean Hausser; Avi Mayo; Michael E. Rothenberg; Tomer Kalisky; Uri Alon
There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks.