Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Spurlock is active.

Publication


Featured researches published by Michael E. Spurlock.


Obesity | 2008

Tlr-4 Deficiency Selectively Protects Against Obesity Induced by Diets High in Saturated Fat

Jeremy E. Davis; Nicholas K. Gabler; Jennifer Walker-Daniels; Michael E. Spurlock

Toll‐like receptor‐4 (Tlr‐4), a key pattern recognition receptor involved in innate immune response, is activated by saturated fatty acids (SFAs). To investigate the involvement of this receptor in obesity caused by consumption of diets high in fat, we utilized male Tlr‐4‐deficient 10ScN mice and 10J controls. Mice were fed either low fat (low‐fat control (LFC)), high unsaturated fat (high‐fat control (HFC)), or high saturated fat + palmitate (HFP) diets ad libitum for 16 weeks. Relative to the LFC diet, the HFC diet resulted in greater epididymal fat pad weights and adipocyte hypertrophy in both Tlr‐4‐deficient and normal mice. However, the 10ScN mice were completely protected against the obesigenic effects of the HFP diet. Moreover, macrophage infiltration and monocyte chemotactic protein‐1 (MCP‐1) transcript abundance were lower in adipose tissue of 10ScN mice fed the HFP diet, and the hyperinsulinemic response was negated. Tlr‐4‐deficient mice also had markedly lower circulating concentrations of MCP‐1 and much less nuclear factor‐κB (NFκB) protein in nuclear extracts prepared from adipose tissue, irrespective of diet. In contrast, Tlr‐4 deficiency did not attenuate the induction of tumor necrosis factor‐α (TNF‐α) or interleukin‐6 (IL‐6) expression in adipose tissue. These data indicate that Tlr‐4 deficiency selectively protects against the obesigenic effects of SFA and alters obesity‐related inflammatory responses in adipose tissue.


Journal of Nutritional Biochemistry | 2011

Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes

Jeremy E. Davis; Douglas Robert Braucher; Jennifer Walker-Daniels; Michael E. Spurlock

We have previously shown that toll-like receptor-4 (Tlr4) is involved in obesity-induced inflammation in adipose tissue (AT). However, less is known about the role of Tlr2 in this process. To determine the involvement of this receptor in obesity-induced inflammation, we utilized male Tlr2(-/-) mice that were backcrossed onto a mouse model of diet-induced obesity (DIO). Mice were fed either low-fat control (LFD) or high-fat diet (HFD) ad libitum for 16 weeks. Despite negligible differences in body weight or energy intake, Tlr2(-/-) mice were protected from HFD-induced adiposity as was evident by reduced epididymal fat pad weight and carcass lipid content. Corresponding with these effects was a blunted accumulation of F4/80-positive macrophages in AT of Tlr2(-/-) mice. Furthermore, transcript abundance of proinflammatory mediators, including monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNFα) and nitric oxide synthase-2 (NOS2) in AT of Tlr2(-/-) mice, was lower or less responsive to DIO. There were no significant differences in serum markers of insulin sensitivity (data not shown). However, adipocytes derived from stromal vascular cells (SVCs) isolated from AT of Tlr2(-/-) mice had considerably greater basal and insulin-stimulated glucose uptake as compared with those obtained from Tlr2(+/+) mice. Furthermore, the absence of Tlr2(-/-) precluded the induction of insulin resistance by zymosan A (ZymA) but not by palmitate. These data indicate that Tlr2 may be directly involved in HFD-induced inflammation and may also regulate basal and insulin-stimulated glucose uptake in adipocytes.


Hormone and Metabolic Research | 2009

The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes.

Jeremy E. Davis; Nicholas K. Gabler; Jennifer Walker-Daniels; Michael E. Spurlock

Saturated fatty acids (SFAs) are known to induce inflammation and insulin resistance in adipocytes through toll-like receptor-4 (Tlr4) signaling, but the mechanisms are not well delineated. Furthermore, the potential roles of Tlr2 and the c-Jun N-terminal kinase (JNK) in inflammation in adipocytes have not been investigated. We demonstrated that palmitate, lipopolysaccharide (LPS), and the toll-like receptor-2 (Tlr2) agonist, zymosan A (ZymA), induced insulin resistance in a time- and dose-dependent manner in 3T3-L1 adipocytes. Corresponding with the reduction of insulin sensitivity was an increased expression of IL-6, as well as activation of the proinflammatory transcription factors, nuclear factor kappa B, and activator protein-1. Reactive oxygen species (ROS) accumulation was also observed in palmitate and Tlr agonist treated adipocytes. The JNK inhibitor, SP600125, attenuated insulin resistance mediated by SFA and Tlr agonists, which corresponded with a diminished proinflammatory response and reduced ROS accumulation. Collectively, these results demonstrated Tlr2 involvement in adipocyte inflammation and therefore implicated the receptor as a potential target for SFA. Moreover, activation of JNK also appeared to be essential to Tlr2-, as well as Tlr4-induced insulin resistance and oxidative stress.


Journal of Nutritional Biochemistry | 2009

Feeding long-chain n−3 polyunsaturated fatty acids during gestation increases intestinal glucose absorption potentially via the acute activation of AMPK

Nicholas K. Gabler; J Scott Radcliffe; Joel D. Spencer; Doug M. Webel; Michael E. Spurlock

The current study utilized Ussing chambers to examine the impact of supplementing maternal gestation and/or lactation diets with n-3 polyunsaturated fatty acids (PUFA) provided via a protected fish oil (PFO) product on intestinal fatty acid profiles and ex vivo glucose uptake in the jejunum of weanling piglets. Jejunum tissues were enriched with n-3 PUFA as a result of feeding the sows the PFO during gestation and/or lactation (P<.05). Glucose uptake improved by twofold (P<.042) in intestinal preparations obtained from the offspring of sows fed PFO during gestation or throughout gestation/lactation versus lactation alone. This was also reflected in the jejunum protein expressions of glucose transporter 2 (GLUT2) and sodium-dependent glucose transporter 1 (SGLT1). Furthermore, adding docosahexaenoic acid (DHA) or an AMP-activated protein kinase (AMPK) agonist to the chamber buffer improved glucose uptake (P<.05) in intestinal preparations obtained from the offspring fed the control diet, devoid of the PFO product and containing minimal concentrations of n-3 PUFA. Collectively, these data indicate two important points. First, long-term exposure to n-3 PUFA via the maternal gestation diet effectively enhances glucose uptake in the weanling piglet, and the underlying mechanism may be associated with changes in the intestinal fatty acid profile. Secondly, there is an apparent direct and acute effect of DHA that is achieved within a time frame that precludes substantial changes in the intestinal fatty acid profile. Additionally, both mechanisms may involve activation of AMPK. Thus, n-3 PUFA delivered in utero and postnatally via the maternal diet may help the offspring adapt quickly to rapidly changing diets early in life and allow optimal nutrient uptake.


Journal of Obesity | 2011

Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study.

Marta D. Van Loan; Nancy L. Keim; Sean H. Adams; Elaine Souza; Leslie R. Woodhouse; Anthony P. Thomas; Megan Witbracht; Erik R. Gertz; Brian D. Piccolo; Andrew A. Bremer; Michael E. Spurlock

Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500u2009kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered.


Journal of Animal Science | 2011

Effects of ad libitum and restricted feed intake on growth performance and body composition of Yorkshire pigs selected for reduced residual feed intake

Nick Boddicker; Nicholas K. Gabler; Michael E. Spurlock; Daniel S. Nettleton; Jack C. M. Dekkers

Residual feed intake (RFI), defined as the difference in the observed and expected feed intake while accounting for growth and backfat, has gained much attention, but little is known about why pigs selected for reduced RFI are more efficient. To this end, a line of Yorkshire pigs selected for reduced RFI was developed. The objective of this study was to evaluate the 5th generation of this select line against a randomly selected control line for performance, carcass and chemical carcass composition, and overall efficiency toward the later part of the growth phase. Eighty barrows, 40 from each line, were paired by age (~132 d, P < 0.60) and BW (74.8 ± 9.9 kg, P < 0.49) and randomly assigned to 1 of 4 feeding treatments in 10 replicates: 1) ad libitum, 2) 75% of ad libitum, 55% of ad libitum, and BW stasis, with weekly adjustments in intake to keep BW constant for each pig. Pigs were individually penned (group housing was used for selection) and on treatment for 6 wk. Initial BW did not differ between the lines (P < 0.49). The ad libitum select pigs consumed 10% less feed (P < 0.09) than the ad libitum control with no significant difference in BW (P < 0.80) and slight differences in carcass fat composition (P < 0.20) and backfat (P < 0.11), which resulted in significantly less carcass energy (P < 0.03). Under restricted feeding, the select line had an increase in BW (P = 0.10) while consuming the same ration of feed as the control line with no significant difference in chemical carcass composition and lighter visceral weights, which was significant for the 75% of ad libitum treatment (P < 0.01). Under BW stasis feeding the select line consumed 7.6% less feed overall (P = 0.21) and 18% less feed at the end of the 6 wk (P < 0.08), to maintain static BW with no significant difference in chemical carcass composition compared with the control line. Overall, the select line had lighter visceral weight (P < 0.02) and a greater dressing percentage (P < 0.03) compared with the control line. Using regression, the select line had reduced energy retention (P < 0.04) and feed energy utilization (P < 0.34); however, the select line appeared to have reduced maintenance requirements (P < 0.13). In conclusion, selection for reduced RFI decreases feed intake with no significant difference (P > 0.05) in growth performance, reduced backfat, increased dressing percentage, and reduced maintenance requirements. All of these traits are appealing to the producer and result in increased profits in the production setting.


Animal | 2011

Effects of ad libitum and restricted feeding on early production performance and body composition of Yorkshire pigs selected for reduced residual feed intake.

Nick Boddicker; Nicholas K. Gabler; Michael E. Spurlock; Daniel S. Nettleton; Jack C. M. Dekkers

Residual feed intake (RFI), defined as the difference between observed and expected feed intake based on growth and backfat, has been used to investigate genetic variation in feed efficiency in cattle, poultry and pigs. However, little is known about the biological basis of differences in RFI in pigs. To this end, the objective of this study was to evaluate the fifth generation of a line of pigs selected for reduced RFI against a randomly selected Control line for performance, carcass and chemical carcass composition and overall efficiency. Here, emphasis was on the early grower phase. A total of 100 barrows, 50 from each line, were paired by age and weight (22.6 ± 3.9 kg) and randomly assigned to one of four feeding treatments in 11 replicates: ad libitum (Ad), 75% of Ad (Ad75), 55% of Ad (Ad55) and weight stasis (WS), which involved weekly adjustments in intake to keep body weight (BW) constant for each pig. Pigs were individually penned (group housing was used for selection) and were on treatment for 6 weeks. Initial BW did not significantly differ between the lines (P > 0.17). Under Ad feeding, the low RFI pigs consumed 8% less feed compared with Control line pigs (P < 0.06), had less carcass fat (P < 0.05), but with no significant difference in growth rate (P > 0.85). Under restricted feeding, low RFI pigs under the Ad75 treatment had a greater rate of gain while consuming the same amount of feed as Control pigs. Despite the greater gain, no significant line differences in carcass composition or carcass traits were observed. For the WS treatment, low RFI pigs had similar BW (P > 0.37) with no significant difference in feed consumption (P > 0.32). Overall, selection for reduced RFI has decreased feed intake, with limited differences in growth rate but reduced carcass fat, as seen under Ad feeding. Collectively, results indicate that the effects of selection for low RFI are evident during the early grower stage, which allows for greater savings to the producer.


Journal of Nutrition | 2010

A Mitochondria-Targeted Vitamin E Derivative Decreases Hepatic Oxidative Stress and Inhibits Fat Deposition in Mice

Gaowei Mao; George A. Kraus; Ikyon Kim; Michael E. Spurlock; T. B. Bailey; Qijing Zhang; Donald C. Beitz

Our objective in this study was to determine whether a mitochondria-targeted vitamin E derivative (MitoVit E) would decrease oxidative stress and associated obesity by preventing a previously proposed aconitase inhibition cascade. Sixty-four mice were fed a high-fat (HF) diet for 5 wk. They were then switched to either a low-fat (LF) or a medium-fat (MF) diet and gavaged with MitoVit E (40 mg MitoVit E x kg body weight(-1)) or drug vehicle (10% ethanol in 0.9% NaCl solution) every other day for 5 wk. Epididymal fat weight, as well as liver lipid and remaining carcass lipid, were significantly lower in the MF group receiving MitoVit E (MF-E) than in the MF group receiving vehicle only (MF-C). Liver mitochondrial H(2)O(2) production and the protein carbonyl level were also significantly lower in MF-E than in MF-C mice. In contrast, none of the biochemical variables (aconitase activity, ATP and H(2)O(2) production, and protein carbonyl level) in the muscle mitochondria were modified by MitoVit E in either MF or LF groups. Expression of acetyl-CoA carboxylase and fatty acid synthase in both liver and adipose tissue of MF groups was not affected by MitoVit E. However, expression of carnitine palmitoyltransferase 1a in the liver and uncoupling protein 2 in adipose tissue were significantly enhanced by MitoVit E in both LF and MF groups. In conclusion, MitoVit E attenuates hepatic oxidative stress and inhibits fat deposition in mice but not through alleviation of the aconitase inhibition cascade.


British Journal of Nutrition | 2011

Effect of a mitochondria-targeted vitamin E derivative on mitochondrial alteration and systemic oxidative stress in mice.

Gaowei Mao; George A. Kraus; Ikyon Kim; Michael E. Spurlock; T. B. Bailey; Donald C. Beitz

The objective of the present study was to determine whether a mitochondria-targeted vitamin E derivative (MitoVit E) would affect certain mitochondrial parameters, as well as systemic oxidative stress. A total of sixty-four mice were fed a high-fat (HF) diet for 5 weeks. They were then switched to either a low-fat (LF) or a medium-fat (MF) diet, and administered orally with MitoVit E (40 mg MitoVit E/kg body weight) or drug vehicle (10 % (v/v) ethanol in 0·9 % (w/v) NaCl solution), every other day for 5 weeks. Mitochondrial ATP and H(2)O(2) production rates in both the liver and the gastrocnemius were not affected by MitoVit E administration in either LF or MF diet-fed mice. However, the number and average size of the subsarcolemmal mitochondria, but not the intermyofibrillar mitochondria, from the soleus muscle were significantly higher in the MF group receiving MitoVit E (MF-E) than in the MF group receiving vehicle only (MF-C). After the mice were switched from the HF diet to the four dietary treatments (LF-C, LF-E, MF-C and MF-E), the decrease in urinary isoprostane concentration was significantly greater in the LF-E group than in the other three groups during the whole study (weeks 6-10). In addition, MitoVit E significantly increased plasma superoxide dismutase (SOD) activity in the MF diet-fed group without affecting plasma glutathione peroxidase activity or H(2)O(2) levels. Overall, these data suggest that MitoVit E affects subsarcolemmal mitochondrial density and systemic oxidative stress parameters such as plasma SOD activity and urinary isoprostane concentration.


Nutrition and Cancer | 2011

Early Lesion Formation in Colorectal Carcinogenesis Is Associated With Adiponectin Status Whereas Neoplastic Lesions Are Associated With Diet and Sex in C57BL/6J Mice

Rebecca L. Boddicker; Elizabeth M. Whitley; Diane F. Birt; Michael E. Spurlock

Adiponectin is an antiinflammatory and insulin-sensitizing hormone that is decreased in obesity. Although controversial, it has been suggested that decreased adiponectin contributes to colorectal cancer risk in obesity. To further investigate the role of adiponectin in obesity-linked colorectal carcinogenesis, we used male and female adiponectin knockout (KO) and wild-type (Wt) C57BL/6J mice. Tumorigenesis was induced in all mice with the combined treatment of azoxymethane (AOM) and dextran sodium sulfate (DSS). Following AOM/DSS treatment, mice were fed a low-fat control (LFC), or high-fat lard (HFL) diet for 7 1/2 wk. KO mice developed fewer total lesions than Wt mice, males developed fewer lesions than females, and mice fed the HFL diet developed fewer lesions than those fed the LFC diet. Early lesion multiplicity was influenced by genotype, whereas advanced lesion development was influenced by sex and diet. Moreover, lesion types were differentially correlated with serum adipokines and colon gene expression of adiponectin receptors, insulin receptor, and toll-like receptor 4. These data suggest that in the AOM/DSS model of carcinogenesis, adiponectin functions to promote early lesion development whereas sex and diet are important regulators of advanced lesion development through pathways involved in inflammation and insulin signaling.

Collaboration


Dive into the Michael E. Spurlock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy E. Davis

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tong Wang

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge