Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas K. Gabler is active.

Publication


Featured researches published by Nicholas K. Gabler.


Obesity | 2008

Tlr-4 Deficiency Selectively Protects Against Obesity Induced by Diets High in Saturated Fat

Jeremy E. Davis; Nicholas K. Gabler; Jennifer Walker-Daniels; Michael E. Spurlock

Toll‐like receptor‐4 (Tlr‐4), a key pattern recognition receptor involved in innate immune response, is activated by saturated fatty acids (SFAs). To investigate the involvement of this receptor in obesity caused by consumption of diets high in fat, we utilized male Tlr‐4‐deficient 10ScN mice and 10J controls. Mice were fed either low fat (low‐fat control (LFC)), high unsaturated fat (high‐fat control (HFC)), or high saturated fat + palmitate (HFP) diets ad libitum for 16 weeks. Relative to the LFC diet, the HFC diet resulted in greater epididymal fat pad weights and adipocyte hypertrophy in both Tlr‐4‐deficient and normal mice. However, the 10ScN mice were completely protected against the obesigenic effects of the HFP diet. Moreover, macrophage infiltration and monocyte chemotactic protein‐1 (MCP‐1) transcript abundance were lower in adipose tissue of 10ScN mice fed the HFP diet, and the hyperinsulinemic response was negated. Tlr‐4‐deficient mice also had markedly lower circulating concentrations of MCP‐1 and much less nuclear factor‐κB (NFκB) protein in nuclear extracts prepared from adipose tissue, irrespective of diet. In contrast, Tlr‐4 deficiency did not attenuate the induction of tumor necrosis factor‐α (TNF‐α) or interleukin‐6 (IL‐6) expression in adipose tissue. These data indicate that Tlr‐4 deficiency selectively protects against the obesigenic effects of SFA and alters obesity‐related inflammatory responses in adipose tissue.


Journal of Animal Science | 2013

The effects of heat stress and plane of nutrition on metabolism in growing pigs1

Sarah Pearce; Nicholas K. Gabler; Jason W. Ross; J. Escobar; J. F. Patience; Robert P. Rhoads; L. H. Baumgard

Heat stress (HS) jeopardizes pig health, reduces performance variables, and results in a fatter carcass. Whether HS directly or indirectly (via reduced feed intake) is responsible for the suboptimal production is not known. Crossbred gilts (n = 48; 35 ± 4 kg BW) were housed in constantly climate-controlled rooms in individual pens and exposed to 1) thermal-neutral (TN) conditions (20°C; 35% to 50% humidity) with ad libitum intake (n = 18), 2) HS conditions (35°C; 20% to 35% humidity) with ad libitum intake (n = 24), or 3) pair-fed [PF in TN conditions (PFTN), n = 6, to eliminate confounding effects of dissimilar feed intake (FI)]. Pigs in the TN and HS conditions were sacrificed at 1, 3, or 7 d of environmental exposure, whereas the PFTN pigs were sacrificed after 7 d of experimental conditions. Individual rectal temperature (Tr), skin temperature (Ts), respiration rates (RR), and FI were determined daily. Pigs exposed to HS had an increase (P < 0.01) in Tr (39.3°C vs. 40.8°C) and a doubling in RR (54 vs. 107 breaths per minute). Heat-stressed pigs had an immediate (d 1) decrease (47%; P < 0.05) in FI, and this magnitude of reduction continued through d 7; by design the nutrient intake pattern for the PFTN controls mirrored the HS group. By d 7, the TN and HS pigs gained 7.76 and 1.65 kg BW, respectively, whereas the PFTN pigs lost 2.47 kg BW. Plasma insulin was increased (49%; P < 0.05) in d 7 HS pigs compared with PFTN controls. Compared with TN and HS pigs, on d 7 PFTN pigs had increased plasma NEFA concentrations (110%; P < 0.05). Compared with TN and PFTN controls, on d 7 circulating N(τ)-methylhistidine concentrations were increased (31%; P < 0.05) in HS pigs. In summary, despite similar nutrient intake, HS pigs gained more BW and had distinctly different postabsorptive bioenergetic variables compared with PFTN controls. Consequently, these heat-induced metabolic changes may in part explain the altered carcass phenotype observed in heat-stressed pigs.


PLOS ONE | 2013

Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs.

Sarah Pearce; Venkatesh Mani; Rebecca L. Boddicker; Jay S. Johnson; Thomas E. Weber; Jason W. Ross; Robert P. Rhoads; L. H. Baumgard; Nicholas K. Gabler

Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.


Journal of Animal Science | 2012

Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock.

Venkatesh Mani; T. E. Weber; L. H. Baumgard; Nicholas K. Gabler

Endotoxin, also referred to as lipopolysaccharide (LPS), can stimulate localized or systemic inflammation via the activation of pattern recognition receptors. Additionally, endotoxin and inflammation can regulate intestinal epithelial function by altering integrity, nutrient transport, and utilization. The gastrointestinal tract is a large reservoir of both gram-positive and gram-negative bacteria, of which the gram-negative bacteria serve as a source of endotoxin. Luminal endotoxin can enter circulation via two routes: 1) nonspecific paracellular transport through epithelial cell tight junctions, and 2) transcellular transport through lipid raft membrane domains involving receptor-mediated endocytosis. Paracellular transport of endotoxin occurs through dissociation of tight junction protein complexes resulting in reduced intestinal barrier integrity, which can be a result of enteric disease, inflammation, or environmental and metabolic stress. Transcellular transport, via specialized membrane regions rich in glycolipids, sphingolipids, cholesterol, and saturated fatty acids, is a result of raft recruitment of endotoxin-related signaling proteins leading to endotoxin signaling and endocytosis. Both transport routes and sensitivity to endotoxin may be altered by diet and environmental and metabolic stresses. Intestinal-derived endotoxin and inflammation result in suppressed appetite, activation of the immune system, and partitioning of energy and nutrients away from growth toward supporting the immune system requirements. In livestock, this leads to the suppression of growth, particularly suppression of lean tissue accretion. In this paper, we summarize the evidence that intestinal transport of endotoxin and the subsequent inflammation leads to decrease in the production performance of agricultural animals and we present an overview of endotoxin detoxification mechanisms in livestock.


Journal of Animal Science | 2013

Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

Sarah Pearce; Venkatesh Mani; Thomas E. Weber; Robert P. Rhoads; J. F. Patience; L. H. Baumgard; Nicholas K. Gabler

Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (P<0.05) in HS compared with TN pigs, while jejunum TER decreased 30% (P<0.05) and LPS APP increased 2-fold (P<0.01). Furthermore, d 7 HS pigs tended (P=0.06) to have increased LPS APP (41%) compared with PFTN controls. Lysozyme and alkaline phosphatase activity decreased (46 and 59%, respectively; P<0.05) over time in HS pigs, while the immune cell marker, myeloperoxidase activity, was increased (P<0.05) in the jejunum at d 3 and 7. These results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability. We hypothesize that these events may lead to increased inflammation, which might contribute to reduced pig performance during warm summer months.


Hormone and Metabolic Research | 2009

The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes.

Jeremy E. Davis; Nicholas K. Gabler; Jennifer Walker-Daniels; Michael E. Spurlock

Saturated fatty acids (SFAs) are known to induce inflammation and insulin resistance in adipocytes through toll-like receptor-4 (Tlr4) signaling, but the mechanisms are not well delineated. Furthermore, the potential roles of Tlr2 and the c-Jun N-terminal kinase (JNK) in inflammation in adipocytes have not been investigated. We demonstrated that palmitate, lipopolysaccharide (LPS), and the toll-like receptor-2 (Tlr2) agonist, zymosan A (ZymA), induced insulin resistance in a time- and dose-dependent manner in 3T3-L1 adipocytes. Corresponding with the reduction of insulin sensitivity was an increased expression of IL-6, as well as activation of the proinflammatory transcription factors, nuclear factor kappa B, and activator protein-1. Reactive oxygen species (ROS) accumulation was also observed in palmitate and Tlr agonist treated adipocytes. The JNK inhibitor, SP600125, attenuated insulin resistance mediated by SFA and Tlr agonists, which corresponded with a diminished proinflammatory response and reduced ROS accumulation. Collectively, these results demonstrated Tlr2 involvement in adipocyte inflammation and therefore implicated the receptor as a potential target for SFA. Moreover, activation of JNK also appeared to be essential to Tlr2-, as well as Tlr4-induced insulin resistance and oxidative stress.


Nutrition & Metabolism | 2013

Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia

Venkatesh Mani; James H. Hollis; Nicholas K. Gabler

BackgroundIntestinal derived endotoxin and the subsequent endotoxemia can be considered major predisposing factors for diseases such as atherosclerosis, sepsis, obesity and diabetes. Dietary fat has been shown to increase postprandial endotoxemia. Therefore, the aim of this study was to assess the effects of different dietary oils on intestinal endotoxin transport and postprandial endotoxemia using swine as a model. We hypothesized that oils rich in saturated fatty acids (SFA) would augment, while oils rich in n-3 polyunsaturated fatty acids (PUFA) would attenuate intestinal endotoxin transport and circulating concentrations.MethodsPostprandial endotoxemia was measured in twenty four pigs following a porridge meal made with either water (Control), fish oil (FO), vegetable oil (VO) or coconut oil (CO). Blood was collected at 0, 1, 2, 3 and 5 hours postprandial and measured for endotoxin. Furthermore, ex vivo ileum endotoxin transport was assessed using modified Ussing chambers and intestines were treated with either no oil or 12.5% (v/v) VO, FO, cod liver oil (CLO), CO or olive oil (OO). Ex vivo mucosal to serosal endotoxin transport permeability (Papp) was then measured by the addition of fluorescent labeled-lipopolysaccharide.ResultsPostprandial serum endotoxin concentrations were increased after a meal rich in saturated fatty acids and decreased with higher n-3 PUFA intake. Compared to the no oil control, fish oil and CLO which are rich in n-3 fatty acids reduced ex vivo endotoxin Papp by 50% (P < 0.05). Contrarily, saturated fatty acids increased the Papp by 60% (P = 0.008). Olive and vegetable oils did not alter intestinal endotoxin Papp.ConclusionOverall, these results indicate that saturated and n-3 PUFA differentially regulate intestinal epithelial endotoxin transport. This may be associated with fatty acid regulation of intestinal membrane lipid raft mediated permeability.


Journal of Nutritional Biochemistry | 2009

Feeding long-chain n−3 polyunsaturated fatty acids during gestation increases intestinal glucose absorption potentially via the acute activation of AMPK

Nicholas K. Gabler; J Scott Radcliffe; Joel D. Spencer; Doug M. Webel; Michael E. Spurlock

The current study utilized Ussing chambers to examine the impact of supplementing maternal gestation and/or lactation diets with n-3 polyunsaturated fatty acids (PUFA) provided via a protected fish oil (PFO) product on intestinal fatty acid profiles and ex vivo glucose uptake in the jejunum of weanling piglets. Jejunum tissues were enriched with n-3 PUFA as a result of feeding the sows the PFO during gestation and/or lactation (P<.05). Glucose uptake improved by twofold (P<.042) in intestinal preparations obtained from the offspring of sows fed PFO during gestation or throughout gestation/lactation versus lactation alone. This was also reflected in the jejunum protein expressions of glucose transporter 2 (GLUT2) and sodium-dependent glucose transporter 1 (SGLT1). Furthermore, adding docosahexaenoic acid (DHA) or an AMP-activated protein kinase (AMPK) agonist to the chamber buffer improved glucose uptake (P<.05) in intestinal preparations obtained from the offspring fed the control diet, devoid of the PFO product and containing minimal concentrations of n-3 PUFA. Collectively, these data indicate two important points. First, long-term exposure to n-3 PUFA via the maternal gestation diet effectively enhances glucose uptake in the weanling piglet, and the underlying mechanism may be associated with changes in the intestinal fatty acid profile. Secondly, there is an apparent direct and acute effect of DHA that is achieved within a time frame that precludes substantial changes in the intestinal fatty acid profile. Additionally, both mechanisms may involve activation of AMPK. Thus, n-3 PUFA delivered in utero and postnatally via the maternal diet may help the offspring adapt quickly to rapidly changing diets early in life and allow optimal nutrient uptake.


Journal of Animal Science | 2014

Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs

Sarah Pearce; Maria Victoria Sanz-Fernandez; James H. Hollis; L. H. Baumgard; Nicholas K. Gabler

Acute heat stress (HS) and heat stroke can be detrimental to the health, well-being, and performance of mammals such as swine. Therefore, our objective was to chronologically characterize how a growing pig perceives and initially copes with a severe heat load. Crossbred gilts (n=32; 63.8±2.9 kg) were subjected to HS conditions (37°C and 40% humidity) with ad libitum intake for 0, 2, 4, or 6 h (n=8/time point). Rectal temperature (Tr), respiration rates (RR), and feed intake were determined every 2 h. Pigs were euthanized at each time point and fresh ileum and colon samples were mounted into modified Ussing chambers to assess ex vivo intestinal integrity and function. Transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran (FD4) permeability were assessed. As expected, Tr increased linearly over time (P<0.001) with the highest temperature observed at 6 h of HS. Compared to the 0-h thermal-neutral (TN) pigs, RR increased (230%; P<0.001) in the first 2 h and remained elevated over the 6 h of HS (P<0.05). Feed intake was dramatically reduced due to HS and this corresponded with significant changes in plasma glucose, ghrelin, and glucose-dependent insulinotropic peptide (P<0.050). At as early as 2 h of HS, ileum TER linearly decreased (P<0.01), while FD4 linearly increased with time (P<0.05). Colon TER and FD4 changed due to HS in quadratic responses over time (P=0.050) similar to the ileum but were less pronounced. In response to HS, ileum and colon heat shock protein (HSP) 70 mRNA and protein abundance increased linearly over time (P<0.050). Altogether, these data indicated that a short duration of HS (2-6 h) compromised feed intake and intestinal integrity in growing pigs.


Journal of Animal Science | 2011

Effects of selection for decreased residual feed intake on composition and quality of fresh pork

R. M. Smith; Nicholas K. Gabler; Jennifer Young; W. Cai; Nicholas James Boddicker; Mark J. Anderson; Elisabeth J. Huff-Lonergan; Jack C. M. Dekkers; Steven M. Lonergan

The objectives of this study were to determine the extent to which selection for decreased residual feed intake (RFI) affects pork composition and quality. Pigs from the fifth generation of selection for decreased RFI (select) and a randomly selected line (control) were utilized. Two experiments were conducted. In Exp. 1, barrows (22.6 ± 3.9 kg) from select and control lines were paired based on age and BW. The test was conducted in 8 replicates of pairs for the test period of 6 wk. Calpastatin activity and myosin isoforms profile were determined on samples from the LM. Control barrows were heavier (59.1 vs. 55.0 kg; P < 0.01) at the end of the test period. Calpastatin activity was greater (P < 0.01) in LM of select barrows than control barrows. In Exp. 2, composition and quality of gilts (114 kg) from control and select lines were determined. The model included fixed effects of line, slaughter date, melanocortin-4 receptor (MC4R) genotype, barn group, line × slaughter date, genotype × line interactions, a covariate of off-test BW, and sire, pen, and litter fitted as random effects. The select line (n = 80) had 0.043 kg less (P < 0.05) RFI per day than the control line (n = 89). Loin quality and composition were determined at 2 d postmortem. Desmin degradation was measured at 2 and 7 d postmortem. Purge, cook loss, sensory traits, and star probe texture were measured at 7 to 10 d postmortem on cooked chops. Residual correlations between RFI and composition and quality traits were calculated. Compared with the control line, carcasses from the select line tended to have less (P = 0.09) backfat, greater (P < 0.05) loin depth, and greater (P < 0.05) fat free lean. Loin chops from the select line had less (P < 0.01) intramuscular lipid content than loin chops from control line. Significant residual correlations between RFI and both tenderness (r = 0.24, P < 0.01) and star probe (r = -0.26, P < 0.01) were identified. Selection for decreased RFI has the potential to improve carcass composition with few effects on pH and water-holding capacity. However, decreased RFI could negatively affect tenderness and texture because of decreased lipid content and decreased postmortem protein degradation.

Collaboration


Dive into the Nicholas K. Gabler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge