Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Zalis is active.

Publication


Featured researches published by Michael E. Zalis.


Gastroenterology | 2003

Computerized tomographic colonography: Performance evaluation in a retrospective multicenter setting

C. Daniel Johnson; Alicia Y. Toledano; Benjamin A. Herman; Abraham H. Dachman; Elizabeth G. McFarland; Matthew Barish; James A. Brink; Randy D. Ernst; Joel G. Fletcher; Robert A. Halvorsen; Amy K. Hara; Kenneth D. Hopper; Robert E. Koehler; David Lu; Michael Macari; Robert L. MacCarty; Frank H. Miller; Martina M. Morrin; Erik K. Paulson; Judy Yee; Michael E. Zalis

BACKGROUND & AIMS No multicenter study has been reported evaluating the performance and interobserver variability of computerized tomographic colonography. The aim of this study was to assess the accuracy of computerized tomographic colonography for detecting clinically important colorectal neoplasia (polyps >or=10 mm in diameter) in a multi-institutional study. METHODS A retrospective study was developed from 341 patients who had computerized tomographic colonography and colonoscopy among 8 medical centers. Colonoscopy and pathology reports provided the standard. A random sample of 117 patients, stratified by criterion standard, was requested. Ninety-three patients were included (47% with polyps >or=10 mm; mean age, 62 years; 56% men; 84% white; 40% reported colorectal symptoms; 74% at increased risk for colorectal cancer). Eighteen radiologists blinded to the criterion standard interpreted computerized tomography colonography examinations, each using 2 of 3 different software display platforms. RESULTS The average area under the receiver operating characteristic curve for identifying patients with at least 1 lesion >or=10 mm was 0.80 (95% lower confidence bound, 0.74). The average sensitivity and specificity were 75% (95% lower confidence bound, 68%) and 73% (95% lower confidence bound, 66%), respectively. Per-polyp sensitivity was 75%. A trend was observed for better performance with more observer experience. There was no difference in performance across software display platforms. CONCLUSIONS Computerized tomographic colonography performance compared favorably with reported performance of fecal occult blood testing, flexible sigmoidoscopy, and barium enema. A prospective study evaluating the performance of computerized tomography colonography in a screening population is indicated.


Annals of Internal Medicine | 2012

Diagnostic accuracy of laxative-free computed tomographic colonography for detection of adenomatous polyps in asymptomatic adults, A prospective evaluation

Michael E. Zalis; Michael A. Blake; Wenli Cai; Peter F. Hahn; Elkan F. Halpern; Imrana G. Kazam; Myles D. Keroack; Cordula Magee; Janne Näppi; Rocio Perez-Johnston; John R. Saltzman; Abhinav Vij; Judy Yee; Hiroyuki Yoshida

BACKGROUND Colon screening by optical colonoscopy (OC) or computed tomographic colonography (CTC) requires a laxative bowel preparation, which inhibits screening participation. OBJECTIVE To assess the performance of detecting adenomas 6 mm or larger and patient experience of laxative-free, computer-aided CTC. DESIGN Prospective test comparison of laxative-free CTC and OC. The CTC included electronic cleansing and computer-aided detection. Optical colonoscopy examinations were initially blinded to CTC results, which were subsequently revealed during colonoscope withdrawal; this method permitted reexamination to resolve discrepant findings. Unblinded OC served as a reference standard. (ClinicalTrials.gov registration number: NCT01200303) SETTING Multicenter ambulatory imaging and endoscopy centers. PARTICIPANTS 605 adults aged 50 to 85 years at average to moderate risk for colon cancer. MEASUREMENTS Per-patient sensitivity and specificity of CTC and first-pass OC for detecting adenomas at thresholds of 10 mm or greater, 8 mm or greater, and 6 mm or greater; per-lesion sensitivity and survey data describing patient experience with preparations and examinations. RESULTS For adenomas 10 mm or larger, per-patient sensitivity of CTC was 0.91 (95% CI, 0.71 to 0.99) and specificity was 0.85 (CI, 0.82 to 0.88); sensitivity of OC was 0.95 (CI, 0.77 to 1.00) and specificity was 0.89 (CI, 0.86 to 0.91). Sensitivity of CTC was 0.70 (CI, 0.53 to 0.83) for adenomas 8 mm or larger and 0.59 (CI, 0.47 to 0.70) for those 6 mm or larger; sensitivity of OC for adenomas 8 mm or larger was 0.88 (CI, 0.73 to 0.96) and 0.76 (CI, 0.64 to 0.85) for those 6 mm or larger. The specificity of OC at the threshold of 8 mm or larger was 0.91 and at 6 mm or larger was 0.94. Specificity for OC was greater than that for CTC, which was 0.86 at the threshold of 8 mm or larger and 0.88 at 6 mm or larger (P= 0.02). Reported participant experience for comfort and difficulty of examination preparation was better with CTC than OC. LIMITATIONS There were 3 CTC readers. The survey instrument was not independently validated. CONCLUSION Computed tomographic colonography was accurate in detecting adenomas 10 mm or larger but less so for smaller lesions. Patient experience was better with laxative-free CTC. These results suggest a possible role for laxative-free CTC as an alternate screening method.


IEEE Transactions on Medical Imaging | 2004

Digital subtraction bowel cleansing for CT colonography using morphological and linear filtration methods

Michael E. Zalis; James Perumpillichira; Peter F. Hahn

We describe a method to perform postacquisition processing of computed tomography colonography (virtual colonoscopy) datasets that results in electronic removal of opacified, ingested bowel contents while reconstructing natural appearing boundaries of colon lumen and thereby permitting 3D (three-dimensional) visual analyses of the resulting colon models.


Journal of The American College of Radiology | 2009

ACR Colon Cancer Committee White Paper: Status of CT Colonography 2009

Elizabeth G. McFarland; Joel G. Fletcher; Perry J. Pickhardt; Abraham H. Dachman; Judy Yee; Cynthia H. McCollough; Michael Macari; Paul Knechtges; Michael E. Zalis; Matthew A. Barish; David H. Kim; Kathryn J. Keysor; C. Daniel Johnson

PURPOSE To review the current status and rationale of the updated ACR practice guidelines for CT colonography (CTC). METHODS Clinical validation trials in both the United States and Europe are reviewed. Key technical aspects of the CTC examination are emphasized, including low-dose protocols, proper insufflation, and bowel preparation. Important issues of implementation are discussed, including training and certification, definition of the target lesion, reporting of colonic and extracolonic findings, quality metrics, reimbursement, and cost-effectiveness. RESULTS Successful validation trials in screening cohorts both in the United States with ACRIN and in Germany demonstrated sensitivity > or = 90% for patients with polyps >10 mm. Proper technique is critical, including low-dose techniques in screening cohorts, with an upper limit of the CT dose index by volume of 12.5 mGy per examination. Training new readers includes the requirement of interactive workstation training with 2-D and 3-D image display techniques. The target lesion is defined as a polyp > or = 6 mm, consistent with the American Cancer Society joint guidelines. Five quality metrics have been defined for CTC, with pilot data entered. Although the CMS national noncoverage decision in May 2009 was a disappointment, multiple third-party payers are reimbursing for screening CTC. Cost-effective modeling has shown CTC to be a dominant strategy, including in a Medicare cohort. CONCLUSION Supported by third-party payer reimbursement for screening, CTC will continue to further transition into community practice and can provide an important adjunctive examination for colorectal screening.


Journal of The American College of Radiology | 2010

Advanced Search of the Electronic Medical Record: Augmenting Safety and Efficiency in Radiology

Michael E. Zalis; Mitchell A. Harris

The integration of electronic medical record (EMR) systems into clinical practice has been spurred by general consensus and recent federal incentives and is set to become a standard feature of clinical practice in the US. We discuss how the addition of advanced search capabilities to the EMR can improve the radiologists ability to integrate contextual data into workflows associated with both for diagnostic and interventional procedures.


Academic Radiology | 2009

Comparative evaluation of the fecal-tagging quality in CT colonography: barium vs. iodinated oral contrast agent.

Koichi Nagata; Anand K. Singh; Minal Jagtiani Sangwaiya; Janne Näppi; Michael E. Zalis; Wenli Cai; Hiroyuki Yoshida

RATIONALE AND OBJECTIVES The purpose of this evaluation was to compare the tagging quality of a barium-based regimen with that of iodine-based regimens for computed tomographic (CT) colonography. MATERIALS AND METHODS Tagging quality was assessed retrospectively in three different types of fecal-tagging CT colonographic cases: 24 barium-based cases, 22 nonionic iodine-based cases, and 24 ionic iodine-based cases. For the purpose of evaluation, the large intestine was divided into six segments, and the tagging homogeneity of a total of 420 segments (70 patients) was graded by three blinded readers from 0 (heterogeneous) to 4 (homogeneous). RESULTS For barium-based cases, the average score for the three readers was 2.4, whereas it was 3.4 for nonionic iodine and 3.6 for ionic iodine. The percentages of segments that were assigned scores of 4 (excellent tagging [100%]) were 11.6%, 61.9%, and 72.9% for the barium-based, nonionic iodine-based, and ionic iodine-based regimens, respectively. The homogeneity scores of iodine-based fecal-tagging regimens were significantly higher than those of the barium-based fecal-tagging regimen (P < .001). The CT attenuation values of tagging in the cases were also assessed: the minimum and maximum values were significantly higher for the iodine-based regimens than for the barium-based regimen (P < .001). CONCLUSIONS The iodine-based fecal-tagging regimens provide significantly greater homogeneity in oral-tagging fecal material than the barium-based fecal-tagging regimen. Iodine-based fecal-tagging regimens can provide an appropriate method for use in nonlaxative or minimum-laxative CT colonography.


IEEE Transactions on Medical Imaging | 2011

Mosaic Decomposition: An Electronic Cleansing Method for Inhomogeneously Tagged Regions in Noncathartic CT Colonography

Wenli Cai; June-Goo Lee; Michael E. Zalis; Hiroyuki Yoshida

Electronic cleansing (EC) is a method that segments fecal material tagged by an X-ray-opaque oral contrast agent in computed tomographic colonography (CTC) images, and effectively removes the material for digitally cleansing the colon. In this study, we developed a novel EC method, called mosaic decomposition (MD), for reduction of the artifacts due to incomplete cleansing of inhomogeneously tagged fecal material in CTC images, especially in noncathartic CTC images. In our approach, the entire colonic region, including the residual fecal regions, was first decomposed into a set of local homogeneous regions, called tiles, after application of a 3-D watershed transform to the CTC images. Each tile was then subjected to a single-class support vector machine (SVM) classifier for soft-tissue discrimination. The feature set of the soft-tissue SVM classifier was selected by a genetic algorithm (GA). A scalar index, called a soft-tissue likelihood, is formulated for differentiation of the soft-tissue tiles from those of other materials. Then, EC based on MD, called MD-cleansing, is performed by first initializing of the level-set front with the classified tagged regions; the front is then evolved by use of a speed function that was designed, based on the soft-tissue index, to reserve the submerged soft-tissue structures while suppressing the residual fecal regions. The performance of the MD-cleansing method was evaluated by use of a phantom and of clinical cases. In the phantom evaluation, our MD-cleansing was trained with the supine (prone) scan and tested on the prone (supine) scan, respectively. In both cases, the sensitivity and specificity of classification were 100%. The average cleansing ratio was 90.6%, and the soft-tissue preservation ratio was 97.6%. In the clinical evaluation, 10 noncathartic CTC cases (20 scans) were collected, and the ground truth of a total of 2095 tiles was established by manual assignment of a material class to each tile. Five cases were randomly selected for training GA/SVM, and the remaining five cases were used for testing. The overall sensitivity and specificity of the proposed classification scheme were 97.1% and 85.3%, respectively, and the accuracy was 94.6%. The area under the ROC curve (Az) was 0.96. Our results indicated that the use of MD-cleansing substantially improved the effectiveness of our EC method in the reduction of incomplete cleansing artifacts.


Digestive Diseases | 2004

Imaging of Inflammatory Bowel Disease: CT and MR

Michael E. Zalis; Ajay K. Singh

Cross-sectional imaging has come to play a central role in the imaging of the abdomen. Concurrent to this, the role of CT and MRI in the imaging of inflammatory bowel disease has also increased in importance. These modalities offer numerous advantages over more traditonal methods of radiologic diagnosis, and provide essential information not only for initial diagnosis, but for management, follow-up and detection of potential complications. On the horizon are several derivative techniques involving CT and MRI, potentially in combination with PET imaging; these may further improve the specificity and sensitivity of imaging modalities for diagnosis of inflammatory bowel disease.


Radiographics | 2010

Informatics in Radiology: Electronic Cleansing for Noncathartic CT Colonography: A Structure-Analysis Scheme

Wenli Cai; Hiroyuki Yoshida; Michael E. Zalis; Janne Näppi; Gordon J. Harris

Computed tomographic (CT) colonography performed after tagging of fecal matter but without a cathartic agent, or noncathartic CT colonography (also known as laxative-free CT colonography), is regarded as a promising next-generation technique for reducing or eliminating the discomfort associated with cathartic bowel preparation, which is the major barrier to undergoing colon cancer screening. Electronic cleansing is an emerging technique for the removal of tagged fecal materials from CT colonographic images. Three major electronic cleansing artifacts--soft-tissue degradation, pseudo-soft-tissue structures, and incomplete cleansing--severely impair the quality of electronically cleansed noncathartic CT colonographic images and limit the diagnostic utility of this modality. A structure-analysis electronic cleansing scheme was developed that makes use of local morphologic information to identify submerged colonic soft-tissue structures while removing the tagged material. Combined with other cutting-edge image processing techniques, including local roughness analysis, mosaic decomposition, and level set segmentation, structure-analysis cleansing helps eliminate the aforementioned artifacts, providing diagnostic-quality cleansed CT colonographic images for the detection of colon cancer. Noncathartic CT colonography with the application of structure-analysis cleansing is expected to help promote CT colonography as a patient-friendly method of colorectal cancer screening.


American Journal of Roentgenology | 2010

Initial Observations of Electronic Medical Record Usage During CT and MRI Interpretation: Frequency of Use and Impact on Workflow

Abraham Lin; Mitchell A. Harris; Michael E. Zalis

OBJECTIVE Electronic medical record (EMR) systems permit integration of contextual nonimaging EMR data into examination interpretation; however, the extra effort required to search and review these nonradiologic data are not well characterized. We assessed the gross frequency and pattern of EMR usage in the interpretation of diagnostic CT and MRI examinations. SUBJECTS AND METHODS We defined nonradiologic EMR data as laboratory data, nonimaging specialty report, clinical note, and administrative data not available on PACS. For abdominal, neuroradiologic, and musculoskeletal CT and MRI, we prospectively recorded the time required for image analysis (including prior imaging studies and their reports), nonradiologic EMR use, and initial report drafting by fellows and staff in randomized sessions. We assessed EMR use as a fraction of work activity and according to technique, subspecialty, inpatient status, and radiologist experience. RESULTS We observed 372 CT and MRI interpretations by 33 radiologists. For CT, radiologists used the EMR in 34% of abdominal, 57% of neuroradiologic, and 38% of musculoskeletal interpretations. For MRI, EMR was used in 73% of abdominal, 56% of neuroradiologic, and 33% of musculoskeletal interpretations. For CT, EMR usage comprised 18%, 14%, and 18% of diagnostic effort (image analysis plus EMR use) for abdominal, neuroradiologic, and musculoskeletal interpretations, respectively; for MRI, EMR usage comprised 21%, 16%, and 15% of diagnostic effort for abdominal, neuroradiologic, and musculoskeletal interpretations, respectively. Frequency of EMR use was significantly greater for neuroradiology CT and abdominal MRI (p < 0.05, Fishers test). EMR usage was not consistently related to inpatient status for CT or radiologist experience. CONCLUSION For CT and MRI interpretation, EMR usage is frequent and comprises a significant fraction of diagnostic effort.

Collaboration


Dive into the Michael E. Zalis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judy Yee

University of California

View shared research outputs
Top Co-Authors

Avatar

Elizabeth G. McFarland

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge