Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Francis is active.

Publication


Featured researches published by Michael Francis.


Microcirculation | 2013

Recruitment of Dynamic Endothelial Ca2+ Signals by the TRPA1 Channel Activator AITC in Rat Cerebral Arteries

Xun Qian; Michael Francis; Viktoriya Solodushko; Scott Earley; Mark S. Taylor

Stimulation of endothelial TRP channels, specifically TRPA1, promotes vasodilation of cerebral arteries through activation of Ca2+‐dependent effectors along the myoendothelial interface. However, presumed TRPA1‐triggered endothelial Ca2+ signals have not been described. We investigated whether TRPA1 activation induces specific spatial and temporal changes in Ca2+ signals along the intima that correlates with incremental vasodilation.


American Journal of Pathology | 2013

TRPC4 Inactivation Confers a Survival Benefit in Severe Pulmonary Arterial Hypertension

Abdallah Alzoubi; Philip Almalouf; Michie Toba; Kealan O'Neill; Xun Qian; Michael Francis; Mark S. Taylor; Mikhail Alexeyev; Ivan F. McMurtry; Masahiko Oka; Troy Stevens

Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure with lumen-occluding neointimal and plexiform lesions. Activation of store-operated calcium entry channels promotes contraction and proliferation of lung vascular cells. TRPC4 is a ubiquitously expressed store-operated calcium entry channel, but its role in PAH is unknown. We tested the hypothesis that TRPC4 promotes pulmonary arterial constriction and occlusive remodeling, leading to right ventricular failure in severe PAH. Severe PAH was induced in Sprague-Dawley rats and in wild-type and TRPC4-knockout Fischer 344 rats by a single subcutaneous injection of SU5416 [SU (semaxanib)], followed by hypoxia exposure (Hx; 10% O2) for 3 weeks and then a return to normoxia (Nx; 21% O2) for 3 to 10 additional weeks (SU/Hx/Nx). Although rats of both backgrounds exhibited indistinguishable pulmonary hypertensive responses to SU/Hx/Nx, Fischer 344 rats died within 6 to 8 weeks. Normoxic and hypertensive TRPC4-knockout rats recorded hemodynamic parameters similar to those of their wild-type littermates. However, TRPC4 inactivation conferred a striking survival benefit, due in part to preservation of cardiac output. Histological grading of vascular lesions revealed a reduction in the density of severely occluded small pulmonary arteries and in the number of plexiform lesions in TRPC4-knockout rats. TRPC4 inactivation therefore provides a survival benefit in severe PAH, associated with a decrease in the magnitude of occlusive remodeling.


PLOS ONE | 2013

Robust internal elastic lamina fenestration in skeletal muscle arteries.

Brett S. Kirby; Allison Bruhl; Michelle N. Sullivan; Michael Francis; Frank A. Dinenno; Scott Earley

Holes within the internal elastic lamina (IEL) of blood vessels are sites of fenestration allowing for passage of diffusible vasoactive substances and interface of endothelial cell membrane projections with underlying vascular smooth muscle. Endothelial projections are sites of dynamic Ca2+ events leading to endothelium dependent hyperpolarization (EDH)-mediated relaxations and the activity of these events increase as vessel diameter decreases. We tested the hypothesis that IEL fenestration is greater in distal vs. proximal arteries in skeletal muscle, and is unlike other vascular beds (mesentery). We also determined ion channel protein composition within the endothelium of intramuscular and non-intramuscular skeletal muscle arteries. Popliteal arteries, subsequent gastrocnemius feed arteries, and first and second order intramuscular arterioles from rat hindlimb were isolated, cut longitudinally, fixed, and imaged using confocal microscopy. Quantitative analysis revealed a significantly larger total fenestration area in second and first order arterioles vs. feed and popliteal arteries (58% and 16% vs. 5% and 3%; N = 10 images/artery), due to a noticeably greater average size of holes (9.5 and 3.9 µm2 vs 1.5 and 1.9 µm2). Next, we investigated via immunolabeling procedures whether proteins involved in EDH often embedded in endothelial cell projections were disparate between arterial segments. Specific proteins involved in EDH, such as inositol trisphosphate receptors, small and intermediate conductance Ca2+-activated K+ channels, and the canonical (C) transient receptor potential (TRP) channel TRPC3 were present in both popliteal and first order intramuscular arterioles. However due to larger IEL fenestration in first order arterioles, a larger spanning area of EDH proteins is observed proximal to the smooth muscle cell plasma membrane. These observations highlight the robust area of fenestration within intramuscular arterioles and indicate that the anatomical architecture and endothelial cell hyperpolarizing apparatus for distinct vasodilatory signaling is potentially present.


Circulation Research | 2016

Functional Tuning of Intrinsic Endothelial Ca2+ Dynamics in Swine Coronary Arteries

Michael Francis; Joshua R. Waldrup; Xun Qian; Viktoriya Solodushko; John Meriwether; Mark S. Taylor

RATIONALE Recent data from mesenteric and cerebral beds have revealed spatially restricted Ca(2+) transients occurring along the vascular intima that control effector recruitment and vasodilation. Although Ca(2+) is pivotal for coronary artery endothelial function, spatial and temporal regulation of functional Ca(2+) signals in the coronary endothelium is poorly understood. OBJECTIVE We aimed to determine whether a discrete spatial and temporal profile of Ca(2+) dynamics underlies endothelium-dependent relaxation of swine coronary arteries. METHODS AND RESULTS Using confocal imaging, custom automated image analysis, and myography, we show that the swine coronary artery endothelium generates discrete basal Ca(2+) dynamics, including isolated transients and whole-cell propagating waves. These events are suppressed by depletion of internal stores or inhibition of inositol 1,4,5-trisphosphate receptors but not by inhibition of ryanodine receptors or removal of extracellular Ca(2+). In vessel rings, inhibition of specific Ca(2+)-dependent endothelial effectors, namely, small and intermediate conductance K(+) channels (K(Ca)3.1 and K(Ca)2.3) and endothelial nitric oxide synthase, produces additive tone, which is blunted by internal store depletion or inositol 1,4,5-trisphosphate receptor blockade. Stimulation of endothelial inositol 1,4,5-trisphosphate-dependent signaling with substance P causes idiosyncratic changes in dynamic Ca(2+) signal parameters (active sites, event frequency, amplitude, duration, and spatial spread). Overall, substance P-induced vasorelaxation corresponded poorly with whole-field endothelial Ca(2+) measurements but corresponded precisely with the concentration-dependent change in Ca(2+) dynamics (linearly translated composite of dynamic parameters). CONCLUSIONS Our findings show that endothelium-dependent control of swine coronary artery tone is determined by spatial and temporal titration of inherent endothelial Ca(2+) dynamics that are not represented by tissue-level averaged Ca(2+) changes.


Physiological Reports | 2013

TRPV4 calcium entry and surface expression attenuated by inhibition of myosin light chain kinase in rat pulmonary microvascular endothelial cells

James C. Parker; Masahiro Hashizumi; Sarah V. Kelly; Michael Francis; Marc Mouner; Angela Meyer; Mary I. Townsley; Songwei Wu; Donna L. Cioffi; Mark S. Taylor

In previous studies, blockade or gene deletion of either myosin light chain kinase (MLCK) or the mechanogated transient receptor potential vanilloid 4 (TRPV4) channel attenuated mechanical lung injury. To determine their effects on calcium entry, rat pulmonary microvascular endothelial cells (RPMVEC) were labeled with fluo‐4 and calcium entry initiated with the TRPV4 agonist, 4α‐phorbol 12, 13‐didecanoate (4αPDD). Mean calcium transients peaked at ~25 sec and persisted ~500 sec. The 4αPDD response was essentially abolished in calcium‐free media, or after pretreatment with the MLCK inhibitor, ML‐7. ML‐7 also attenuated the 4αPDD‐induced inward calcium current measured directly using whole‐cell patch clamp. Pretreatment with dynasore, an inhibitor of dynamin produced an initial calcium transient followed by a 4αPDD transient of unchanged peak intensity. Automated averaging of areas under the curve (AUC) of calcium transients in individual cells indicated total calcium activity with a relationship between treatment groups of ML‐7 + 4αPDD < 4αPDD only < dynasore + 4αPDD. Measurement of biotinylated surface TRPV4 protein indicated a significant reduction after ML‐7 pretreatment, but no significant change with dynasore treatment. RPMVEC monolayer electrical resistances were decreased by only 3% with 10 μmol/L 4αPDD and the response was dose‐related. Dynasore alone produced a 29% decrease in resistance, but neither ML‐7 nor dynasore affected the subsequent 4αPDD resistance response. These studies suggest that MLCK may inhibit mechanogated calcium responses through reduced surface expression of stretch activated TRPV4 channels in the plasma membrane.


Microcirculation | 2012

Dynamic Ca2+ signal modalities in the vascular endothelium

Mark S. Taylor; Michael Francis; Xun Qian; Viktoriya Solodushko

Please cite this paper as: Taylor MS, Francis M, Qian X, Solodushko V. Dynamic Ca2+ signal modalities in the vascular endothelium. Microcirculation 19: 423–429, 2012.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth

Carla Blum-Johnston; Richard B. Thorpe; Chelsea Wee; Monica Romero; Alexander Brunelle; Quintin Blood; Rachael Wilson; Arlin B. Blood; Michael Francis; Mark S. Taylor; Lawrence D. Longo; William J. Pearce; Sean M. Wilson

Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.


Frontiers in Physiology | 2014

Decoding dynamic Ca2+ signaling in the vascular endothelium

Mark S. Taylor; Michael Francis

Although acute and chronic vasoregulation is inherently driven by endothelial Ca2+, control and targeting of Ca2+-dependent signals are poorly understood. Recent studies have revealed localized and dynamic endothelial Ca2+ events comprising an intricate signaling network along the vascular intima. Discrete Ca2+ transients emerging from both internal stores and plasmalemmal cation channels couple to specific membrane K+ channels, promoting endothelial hyperpolarization and vasodilation. The spatiotemporal tuning of these signals, rather than global Ca2+ elevation, appear to direct endothelial functions under physiologic conditions. In fact, altered patterns of dynamic Ca2+ signaling may underlie essential endothelial dysfunction in a variety of cardiovascular diseases. Advances in imaging approaches and analyses in recent years have allowed for detailed detection, quantification, and evaluation of Ca2+ dynamics in intact endothelium. Here, we discuss recent insights into these signals, including their sources of origination and their functional encoding. We also address key aspects of data acquisition and interpretation, including broad applications of automated high-content analysis.


American Journal of Physiology-cell Physiology | 2014

Studies on the resolution of subcellular free calcium concentrations: a technological advance. Focus on "detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells".

Ningyong Xu; Michael Francis; Donna L. Cioffi; Troy Stevens

One of the most striking facts about the elements is their unequal distribution and occurrence in nature . —C. R. Hammond free calcium is highly controlled in biological tissues, and much like the physical chemistry of elements ([5][1]), its concentration is unequal in distribution (for recent


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Long-Term High Altitude Hypoxia influences Pulmonary Arterial L-type Calcium Channel mediated Ca2+ signals and Contraction in Fetal and Adult Sheep

Christine Shen; Monica Romero; Alexander Brunelle; Craig Wolfe; Abigail Dobyns; Michael Francis; Mark S. Taylor; Jose L. Puglisi; Lawrence D. Longo; Lubo Zhang; Christopher G. Wilson; Sean M. Wilson

Long-term hypoxia (LTH) has a profound effect on pulmonary arterial vasoconstriction in the fetus and adult. Dysregulation in Ca2+ signaling is important during the development of LTH-induced pulmonary hypertension. In the present study, we tested the hypothesis that L-type Ca2+ channels (CaL), which are voltage dependent and found in smooth, skeletal, and cardiac muscle, are important in the adaptation of pulmonary arterial contractions in postnatal maturation and in response to LTH. Pulmonary arteries were isolated from fetal or adult sheep maintained at low or high altitude (3,801 m) for >100 days. The effects were measured using an L-type Ca2+ channel opener FPL 64176 (FPL) in the presence or absence of an inhibitor, Nifedipine (NIF) on arterial contractions, intracellular Ca2+ oscillations, and ryanodine receptor-driven Ca2+ sparks. FPL induced pulmonary arterial contractions in all groups were sensitive to NIF. However, when compared with 125 mM K+, FPL contractions were greater in fetuses than in adults. FPL reduced Ca2+ oscillations in myocytes of adult but not fetal arteries, independently of altitude. The FPL effects on Ca2+ oscillations were reversed by NIF in myocytes of hypoxic but not normoxic adults. FPL failed to enhance Ca2+ spark frequency and had little impact on spatiotemporal firing characteristics. These data suggest that CaL-dependent contractions are largely uncoupled from intracellular Ca2+ oscillations and the development of Ca2+ sparks. This raises questions regarding the coupling of pulmonary arterial contractility to membrane depolarization, attendant CaL facilitation, and the related associations with the activation of Ca2+ oscillations and Ca2+ sparks.

Collaboration


Dive into the Michael Francis's collaboration.

Top Co-Authors

Avatar

Mark S. Taylor

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Troy Stevens

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Xun Qian

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Donna L. Cioffi

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge