Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael G. Herman is active.

Publication


Featured researches published by Michael G. Herman.


Medical Physics | 2001

Clinical use of electronic portal imaging: Report of AAPM Radiation Therapy Committee Task Group 58

Michael G. Herman; James M. Balter; David A. Jaffray; Kiarin P. McGee; P. Munro; Shlomo Shalev; Marcel van Herk; John Wong

AAPM Task Group 58 was created to provide materials to help the medical physicist and colleagues succeed in the clinical implementation of electronic portal imaging devices (EPIDs) in radiation oncology. This complex technology has matured over the past decade and is capable of being integrated into routine practice. However, the difficulties encountered during the specification, installation, and implementation process can be overwhelming. TG58 was charged with providing sufficient information to allow the users to overcome these difficulties and put EPIDs into routine clinical practice. In answering the charge, this report provides; comprehensive information about the physics and technology of currently available EPID systems; a detailed discussion of the steps required for successful clinical implementation, based on accumulated experience; a review of software tools available and clinical use protocols to enhance EPID utilization; and specific quality assurance requirements for initial and continuing clinical use of the systems. Specific recommendations are summarized to assist the reader with successful implementation and continuing use of an EPID.


International Journal of Radiation Oncology Biology Physics | 2003

TECHNICAL ASPECTS OF DAILY ONLINE POSITIONING OF THE PROSTATE FOR THREE-DIMENSIONAL CONFORMAL RADIOTHERAPY USING AN ELECTRONIC PORTAL IMAGING DEVICE

Michael G. Herman; Thomas M. Pisansky; J Kruse; Joann I. Prisciandaro; Brian J. Davis; Bernard F. King

PURPOSE To develop a real-time electronic portal imaging device (EPID) procedure to identify intraprostatic gold markers and correct daily variations in target position during external beam radiotherapy for prostate cancer. METHODS AND MATERIALS Pretherapy electronic portal images (EPIs) were acquired with a small portion of the therapeutic 18-MV dose from an orthogonal pair of treatment fields. The position of the intraprostatic gold markers on the EPIs was aligned with that on the simulation digitally reconstructed radiographs. If the initial three-dimensional target displacement (3DI) exceeded 5 mm or rotations exceeded 3 degrees, the beam was realigned before the remainder of the dose was delivered. Field-only EPIs were then acquired for all fields and offline analysis was performed to determine the final 3D target placement (3DF). RESULTS Twenty patients completed protocol-specified treatment, and all markers were identified on 99.6% of the pretherapy EPIs. Overall, 53% of treatment fractions were realigned. The mean 3DI was 5.6 mm in all patients (range 3.7-9.3), and the mean 3DF was 2.8 mm (range 1.6-4.0), which was statistically significant (p < 0.001). Rotational corrections were made on 15% of treatments. Mean treatment duration was 1.4 min greater for protocol patients than for similar patients in whom localization was not performed. CONCLUSIONS Frequent field misalignment occurs when external fiducial marks are used for patient alignment. Misalignments can be readily and rapidly identified and corrected with an EPID-based online correction procedure that integrates commercially available equipment and software.


Medical Physics | 2009

Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25

Bruce J. Gerbi; John A. Antolak; F. Christopher Deibel; D Followill; Michael G. Herman; P Higgins; M. Saiful Huq; D Mihailidis; Ellen Yorke; Kenneth R. Hogstrom; Faiz M. Khan

The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of radiochromic film for electrons is addressed, and radiographic film that is no longer available has been replaced by film that is available. Realistic stopping-power data are incorporated when appropriate along with enhanced tables of electron fluence data. A larger list of clinical applications of electron beams is included in the full TG-70 report available at http://www.aapm.org/pubs/reports. Descriptions of the techniques in the clinical sections are not exhaustive but do describe key elements of the procedures and how to initiate these programs in the clinic. There have been no major changes since the TG-25 report relating to flatness and symmetry, surface dose, use of thermoluminescent dosimeters or diodes, virtual source position designation, air gap corrections, oblique incidence, or corrections for inhomogeneities. Thus these topics are not addressed in the TG-70 report.


Medical Physics | 2004

Prostate brachytherapy seed localization by analysis of multiple projections: Identifying and addressing the seed overlap problem

Yi Su; Brian J. Davis; Michael G. Herman; Richard A. Robb

Intraoperative three-dimensional reconstruction of seed locations during prostate brachytherapy for purposes of immediate computation of radiation dosimetry is an active area of current investigation, including methods which use multiple fluoroscopic projections. A simulation study using seed locations extracted from clinical CT data was performed; the result showed that on average one quarter of the seeds had a projection image overlapping with other seeds. The average percentage of non-overlapping seeds for the prostate implants and seed types investigated was 74.5% with a range of 56.9%-92.9%. The distribution of seeds in different cluster sizes was analyzed as well as the distribution of pixel counts of connected components. A statistical classifier was developed to determine the number of seed images in a self-connected component in the segmented images. The classifier was tested with simulation data, and the error rate was below 2%. A method to determine seed image position is also provided. A modified three-film technique was used to reconstruct 3-D seed locations. The algorithm allows unequal number of seed images for each projection as input while current methods require the same number of seed images detected in all projections. An accuracy analysis based on angular and positional uncertainty was performed. The reconstruction and seed localization algorithms were tested with simulation data, and the mean distance error of the reconstructed results was 0.61 mm. A phantom study was performed to validate the seed localization method. Three false positive seeds, 4.7% of the total, in the reconstruction result were observed in this study.


International Journal of Radiation Oncology Biology Physics | 2002

Electronic and film portal images: a comparison of landmark visibility and review accuracy.

J Kruse; Michael G. Herman; Chris R Hagness; Brian J. Davis; Yolanda I. Garces; Michael G. Haddock; Kenneth R. Olivier; Scott L. Stafford; Thomas M. Pisansky

PURPOSE To quantitatively compare a scanning liquid ion chamber electronic portal imaging device (SLIC-EPID) and an amorphous silicon flat panel (aSi) EPID with portal film in clinical applications using measures of landmark visibility and treatment review accuracy. METHODS AND MATERIALS Six radiation oncologists viewed 39 electronic portal images (EPIs) from the SLIC-EPID, 36 EPIs from the aSi-EPID, and portal films of each of these treatment fields. The physicians rated the clarity of anatomic landmarks in the portal images, and the scores were compared between EPID and film. Nine hundred portal image reviews were performed. EPID and film portal images were acquired with known setup errors in either phantom or cadaver treatments. Physicians identified the errors visually in portal films and with computerized analysis for EPID. RESULTS There were no statistically significant (p < 0.05) differences between film and SLIC-EPID in ratings of landmark clarity. Eleven of 12 landmarks were more visible in aSi-EPID than in film. Translational setup errors were identified with an average accuracy of 2.5 mm in film, compared to 1.5 mm with SLIC-EPID and 1.3 mm with aSi-EPID. CONCLUSIONS Both EPIDs are clinically viable replacements for film, but aSi-EPID represents a significant advancement in image quality over film.


Medical Physics | 2005

Examination of dosimetry accuracy as a function of seed detection rate in permanent prostate brachytherapy

Yi Su; Brian J. Davis; Michael G. Herman; Armando Manduca; Richard A. Robb

The variation of permanent prostate brachytherapy dosimetry as a function of seed detection rates was investigated for I125 implants with seed activities commonly employed in contemporary practice. Post-implant imaging and radiation dosimetry data from nine patients who underwent PPB served as the basis of this simulation study. One-thousand random configurations of detected seeds were generated for each patient dataset using various seed detection levels from 30% to 99%. Dose parameters, including D90, were computed for each configuration and compared with the actual dosimetry data. A total of 108 000 complete sets of post-PPB dose volume statistics were computed. The results demonstrated that although the average D90 differed from the true value by less than 5% when 70% or more seeds were identified, the D90 of an individual case could deviate up to 13%. The 95% confidence interval (CI) of estimated D90 values differ by less than 5% from the actual value when 95% or more seeds are detected, or approximately a 7 Gy difference in the D90 value for a prescription dose of 144 Gy. Estimated target volume dose parameters tended to decrease with reduced seed detection rates. The most variable dose parameter was the prostate V100 in absolute scale while the urethral V100 was most variable in a relative sense. Based on this comprehensive simulation study, it is suggested that 95% or more seeds need to be localized in order to provide an accurate estimation of dose parameters for contemporary iodine 125 permanent prostate brachytherapy.


Computer Aided Surgery | 2007

Seed localization and TRUS-fluoroscopy fusion for intraoperative prostate brachytherapy dosimetry

Yi Su; Brian J. Davis; Keith M. Furutani; Michael G. Herman; Richard A. Robb

Objective: To develop and evaluate an integrated approach to intra-operative dosimetry for permanent prostate brachytherapy (PPB) by combining a fluoroscopy-based seed localization routine with a transrectal ultrasound (TRUS)-to-fluoroscopy fusion technique. Materials and Methods: Three-dimensional seed coordinates are reconstructed based on the two-dimensional seed locations identified from three fluoroscopic images acquired at different angles. A seed-based registration approach was examined in both simulation and phantom studies to register the seed locations identified from the fluoroscopic images to the TRUS images. Dose parameters were then evaluated and compared to CT-based dosimetry from a patient dataset. Results: Less than 0.2% error in the D90 value was observed using the TRUS-fluoroscopy image-fusion-based method relative to the CT-based post-implantation dosimetry. In the phantom study, an average distance of 3 mm was observed between the seeds identified from TRUS and the reconstructed seeds at registration. Isodose contours were displayed superimposed on the TRUS images. Conclusions: Promising results were observed in this preliminary study of a TRUS-fluoroscopy fusion-based brachytherapy dosimetry analysis method, suggesting that the method is highly sensitive and calculates clinically relevant dosimetry, including the prostate D90. Further validation of the method is required for eventual clinical application.


Journal of Applied Clinical Medical Physics | 2000

Guide to clinical use of electronic portal imaging

Michael G. Herman; J Kruse; C.R. Hagness

The Electronic Portal Imaging Device (EPID) provides localization quality images and computer‐aided analysis, which should in principal, replace portal film imaging. Modern EPIDs deliver superior image quality and an array of analysis tools that improve clinical decision making. It has been demonstrated that the EPID can be a powerful tool in the reduction of treatment setup errors and the quality assurance and verification of complex treatments. However, in many radiation therapy clinics EPID technology is not in routine clinical use. This low utilization suggests that the capability and potential of the technology alone do not guarantee its full adoption. This paper addresses basic considerations required to facilitate clinical implementation of the EPID technology and gives specific examples of successful implementations.


Radiation Oncology | 2012

The clinical case for proton beam therapy

Robert L. Foote; Scott L. Stafford; Ivy A. Petersen; Jose S. Pulido; Michelle J. Clarke; Steven E. Schild; Yolanda I. Garces; Kenneth R. Olivier; Robert C. Miller; Michael G. Haddock; Elizabeth S. Yan; Nadia N. Laack; Carola Arndt; Steven J. Buskirk; Vickie Miller; Christopher R. Brent; J Kruse; Gary A. Ezzell; Michael G. Herman; Leonard L. Gunderson; Charles Erlichman; Robert B. Diasio

AbstractOver the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy.Summary sentenceProton beam therapy is a technically advanced and promising form of radiation therapy.


Medical Physics | 2004

A methodology to determine margins by EPID measurements of patient setup variation and motion as applied to immobilization devices.

Joann I. Prisciandaro; Christina M. Frechette; Michael G. Herman; Paul D. Brown; Yolanda I. Garces; Robert L. Foote

Assessment of clinic and site specific margins are essential for the effective use of three-dimensional and intensity modulated radiation therapy. An electronic portal imaging device (EPID) based methodology is introduced which allows individual and population based CTV-to-PTV margins to be determined and compared with traditional margins prescribed during treatment. This method was applied to a patient cohort receiving external beam head and neck radiotherapy under an IRB approved protocol. Although the full study involved the use of an EPID-based method to assess the impact of (1) simulation technique, (2) immobilization, and (3) surgical intervention on inter- and intrafraction variations of individual and population-based CTV-to-PTV margins, the focus of the paper is on the technique. As an illustration, the methodology is utilized to examine the influence of two immobilization devices, the UON thermoplastic mask and the Type-S head/ neck shoulder immobilization system on margins. Daily through port images were acquired for selected fields for each patient with an EPID. To analyze these images, simulation films or digitally reconstructed radiographs (DRRs) were imported into the EPID software. Up to five anatomical landmarks were identified and outlined by the clinician and up to three of these structures were matched for each reference image. Once the individual based errors were quantified, the patient results were grouped into populations by matched anatomical structures and immobilization device. The variation within the subgroup was quantified by calculating the systematic and random errors (sigma(sub) and sigma(sub)). Individual patient margins were approximated as 1.65 times the individual-based random error and ranged from 1.1 to 6.3 mm (A-P) and 1.1 to 12.3 mm (S-I) for fields matched on skull and cervical structures, and 1.7 to 10.2 mm (L-R) and 2.0 to 13.8 mm (S-I) for supraclavicular fields. Population-based margins ranging from 5.1 to 6.6 mm (A-P) and 3.7 to 5.7 mm (S-I) were calculated for the corresponding skull/cervical field and 9.3 to 10.0 mm (L-R) and 6.3 to 6.6 mm (S-I) for the supraclavicular fields, respectively. The reported CTV-to-PTV margins are comparable to a value 7-15 mm based on traditional Mayo margins, but in some cases exceed the default values established in RTOG Head and Neck studies. The data suggests that the population-based margins provide sufficient coverage for the majority of the patients. However, the population-derived margins are excessive for some patients and insufficient for others, suggesting that a re-evaluation of current treatment margins for individual patients is warranted. Finally, this methodology provides direct evidence of treatment variation and thus can demonstrate with confidence, the superiority of one technique over another.

Collaboration


Dive into the Michael G. Herman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge