Michael G. Ruppert
University of Newcastle
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael G. Ruppert.
Review of Scientific Instruments | 2013
Michael G. Ruppert; S. O. Reza Moheimani
This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.
international conference on advanced intelligent mechatronics | 2013
Michael G. Ruppert; S. O. Reza Moheimani
When operating the Atomic Force Microscope in tapping mode it is possible to decrease the quality factor of the microcantilever to enhance scan speed. A new field of Atomic Force Microscopy is evolving, which makes use of multiple frequency excitation and detection of the cantilever modes making it necessary to be able to control these modes and their response to excitation. This work proposes a multi-mode Q control approach utilizing positive position feedback, offering full control over the first two flexural modes of the cantilever. By completely damping the first mode and adjusting the quality factor of the second mode, it is possible to scan and obtain images at the second resonance frequency which improves image quality at high scan speeds due to the increased bandwidth of the z-axis feedback loop.
IEEE Transactions on Control Systems and Technology | 2016
Michael G. Ruppert; S. O. Reza Moheimani
Numerous dynamic atomic force micros- copy (AFM) methods have appeared in recent years, which make use of the excitation and detection of higher order eigenmodes of the microcantilever. The ability to control these modes and their responses to excitation is believed to be the key to unraveling the true potential of these methods. In this paper, we highlight a multimode Q control method that exhibits remarkable damping performance and stability robustness. The experimental results obtained in ambient conditions demonstrate improved imaging stability by damping nondriven resonant modes when scanning is performed at a higher eigenmode of the cantilever. Higher scan speeds are shown to result from a decrease in transient response time.
IEEE Transactions on Control Systems and Technology | 2016
Michael G. Ruppert; Kai S. Karvinen; Samuel L. Wiggins; S. O. Reza Moheimani
A fundamental challenge in dynamic mode atomic force microscopy (AFM) is the estimation of the cantilever oscillation amplitude from the deflection signal, which might be distorted by noise and/or high-frequency components. When the cantilever is excited at resonance, its deflection is typically obtained via narrow-band demodulation using a lock-in amplifier (LIA). However, the bandwidth of this measurement technique is ultimately bounded by the low-pass filter, which must be employed after demodulation to attenuate the component at twice the carrier frequency. Furthermore, to measure the amplitude of multiple frequency components, such as higher eigenmodes and/or higher harmonics in multifrequency AFM, multiple LIAs must be employed. In this paper, the authors propose the estimation of amplitude and phase using a linear time-varying Kalman filter that is easily extended to multiple frequencies. Experimental results are obtained using square-modulated sine waves and closed-loop AFM scans, verifying the performance of the proposed Kalman filter.
Beilstein Journal of Nanotechnology | 2016
Michael G. Ruppert; S. O. Reza Moheimani
Summary Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.
IEEE\/ASME Journal of Microelectromechanical Systems | 2017
Michael G. Ruppert; Anthony G. Fowler; Mohammad Maroufi; S. O. Reza Moheimani
The atomic force microscope (AFM) is an invaluable scientific tool; however, its conventional implementation as a relatively costly macroscale system is a barrier to its more widespread use. A microelectromechanical systems (MEMS) approach to AFM design has the potential to significantly reduce the cost and complexity of the AFM, expanding its utility beyond current applications. This paper presents an on-chip AFM based on a silicon-on-insulator MEMS fabrication process. The device features integrated xy electrostatic actuators and electrothermal sensors as well as an AlN piezoelectric layer for out-of-plane actuation and integrated deflection sensing of a microcantilever. The three-degree-of-freedom design allows the probe scanner to obtain topographic tapping-mode AFM images with an imaging range of up to
IEEE Transactions on Nanotechnology | 2014
Kai S. Karvinen; Michael G. Ruppert; Kaushik Mahata; S.O.R. Moheimani
8\mu \mathrm {m}\times 8\mu \mathrm {m}
IFAC Proceedings Volumes | 2014
Michael G. Ruppert; S. O. Reza Moheimani
in closed loop. [2016-0211]
IEEE Transactions on Control Systems and Technology | 2018
Michael R. P. Ragazzon; Michael G. Ruppert; David M. Harcombe; Andrew J. Fleming; Jan Tommy Gravdahl
We present new insights into the modeling of the microcantilever in dynamic mode atomic force microscopy and outline a novel high-bandwidth tip-sample force estimation technique for the development of high-bandwidth z-axis control. Fundamental to the proposed technique is the assumption that in tapping mode atomic force microscopy, the tip-sample force takes the form of an impulse train. Formulating the estimation problem as a Kalman filter, the tip-sample force is estimated directly; thus, potentially enabling high-bandwidth z-axis control by eliminating the dependence of the control technique on microcantilever dynamics and the amplitude demodulation technique. Application of this technique requires accurate knowledge of the models of the microcantilever; a novel identification method is proposed. Experimental data are used in an offline analysis for verification.
IEEE-ASME Transactions on Mechatronics | 2016
Michael G. Ruppert; David M. Harcombe; S. O. Reza Moheimani
Abstract We evaluate two novel reciprocal self-sensing methods for tapping-mode atomic force microscopy (TM-AFM) utilizing charge measurement and charge actuation, respectively. A microcantilever, which can be batch fabricated through a standard microelectromechanical system (MEMS) process, is coated with a single piezoelectric layer and simultaneously used for actuation and deflection sensing. The setup enables the elimination of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. The voltage to charge and charge to voltage transfer functions reveal a high amount of capacitive feedthrough which degrades the dynamic range of the sensors significantly. A feedforward control technique is employed to cancel the feedthrough and increase the dynamic range from less than 1 dB to approximately 30 dB. Experiments show that the conditioned self-sensing schemes achieve an excellent signal-to-noise ratio and can therefore be used to provide the feedback signal for TM-AFM imaging.