Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Gatchell is active.

Publication


Featured researches published by Michael Gatchell.


Review of Scientific Instruments | 2013

First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE

H. T. Schmidt; Richard D. Thomas; Michael Gatchell; S. Rosén; Peter Reinhed; Patrik Löfgren; Lars Brännholm; Mikael Blom; Mikael Björkhage; Erik Bäckström; John D. Alexander; Sven Leontein; Dag Hanstorp; Henning Zettergren; L. Liljeby; A. Källberg; Ansgar Simonsson; Fredrik Hellberg; Sven Mannervik; Mats Larsson; Wolf D. Geppert; Karl-Gunnar Rensfelt; H. Danared; A. Paal; Masaharu Masuda; Per Halldén; Guillermo Andler; Mark H. Stockett; Tao Chen; Gunnar Källersjö

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.


Journal of Physical Chemistry Letters | 2015

Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions

Rudy Delaunay; Michael Gatchell; Patrick Rousseau; A. Domaracka; Sylvain Maclot; Yang Wang; Mark H. Stockett; Tao Chen; L. Adoui; Manuel Alcamí; Fernando Martín; Henning Zettergren; H. Cederquist; B. A. Huber

The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturns moon Titan.


Journal of Chemical Physics | 2015

Formation of H2 from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

Tao Chen; Michael Gatchell; Mark H. Stockett; Rudy Delaunay; A. Domaracka; E. R. Micelotta; A. G. G. M. Tielens; Patrick Rousseau; L. Adoui; B. A. Huber; H. T. Schmidt; H. Cederquist; Henning Zettergren

We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.


Journal of Physics B | 2016

Knockout driven reactions in complex molecules and their clusters

Michael Gatchell; Henning Zettergren

When molecules are excited by photons or energetic particles, they will cool through the emission of photons, electrons, or by fragmenting. Such processes are often thermal as they occur after the excitation energy has been redistributed across all degrees-of-freedom in the system. Collisions with atoms or ions may also lead to ultrafast fragmentation in Rutherford-like scattering processes, where one or several atoms can literally be knocked out of the molecule by the incoming projectile before the energy can be completely redistributed. The resulting fragmentation pathways can in such knockout processes be very different from those in thermal processes.This thesis covers extensive studies of collisions between ions/atoms and isolated Polycyclic Aromatic Hydrocarbon (PAH) molecules, isolated fullerene molecules, or clusters of these. The high stabilities and distinct fragmentation channels make these types of molecules excellent test cases for characterizing knockout-driven fragmentation and the reactions that these processes can lead to. I will present experimental measurements for a wide range of energies and compare them with my own molecular dynamics simulations and quantum chemical calculations. In this thesis, I present an in-depth study of the role of knockout in the energetic processing of molecules and clusters. The competition between knockout and thermally driven fragmentation is discussed in detail.Knockout-driven fragmentation is shown to result in exotic fragments that are far more reactive than the intact parent molecules or fragments from thermal processes. When such reactive species are formed within molecular clusters efficient molecular growth can take place on sub-picosecond timescales. The cluster environments are crucial here because they protect the newly formed molecules by absorbing excess energy. This is a possible pathway for the growth of large PAHs, fullerenes, and similar carbonaceous complexes found in, for instance, the interstellar medium.


Journal of Chemical Physics | 2014

Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

Tao Chen; Michael Gatchell; Mark H. Stockett; John D. Alexander; Y. Zhang; Patrick Rousseau; A. Domaracka; Sylvain Maclot; Rudy Delaunay; L. Adoui; B. A. Huber; Thomas Schlathölter; H. T. Schmidt; H. Cederquist; Henning Zettergren

We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.


Journal of Chemical Physics | 2013

Ions interacting with planar aromatic molecules: Modeling electron transfer reactions

Björn O. Forsberg; John D. Alexander; Tao Chen; A. T. Pettersson; Michael Gatchell; H. Cederquist; Henning Zettergren

We present theoretical absolute charge exchange cross sections for multiply charged cations interacting with the Polycyclic Aromatic Hydrocarbon (PAH) molecules pyrene C(14)H(10), coronene C(24)H(12), or circumcoronene C(54)H(18). These planar, nearly circular, PAHs are modelled as conducting, infinitely thin, and perfectly circular discs, which are randomly oriented with respect to straight line ion trajectories. We present the analytical solution for the potential energy surface experienced by an electron in the field of such a charged disc and a point-charge at an arbitrary position. The location and height of the corresponding potential energy barrier from this simple model are in close agreement with those from much more computationally demanding Density Functional Theory (DFT) calculations in a number of test cases. The model results compare favourably with available experimental data on single- and multiple electron transfer reactions and we demonstrate that it is important to include the orientation dependent polarizabilities of the molecules (model discs) in particular for the larger PAHs. PAH ionization energy sequences from DFT are tabulated and used as model inputs. Absolute cross sections for the ionization of PAH molecules, and PAH ionization energies such as the ones presented here may be useful when considering the roles of PAHs and their ions in, e.g., interstellar chemistry, stellar atmospheres, and in related photoabsorption and photoemission spectroscopies.


Monthly Notices of the Royal Astronomical Society | 2012

Disc scalelengths out to redshift 5.8

Kambiz Fathi; Michael Gatchell; Evanthia Hatziminaoglou; B. Epinat

We compute the exponential disc scalelength for 686 disc galaxies with spectroscopic redshifts out to redshift 5.8 based on Hubble Space Telescope archival data. We compare the results with our previous measurements based on 30 000 nearby galaxies from the Sloan Digital Sky Survey. Our results confirm the presence of a dominating exponential component in galaxies out to this redshift. At the highest redshifts, the disc scalelength for the brightest galaxies with absolute magnitude between -24 and -22 is up to a factor of 8 smaller compared to that in the local Universe. This observed scalelength decrease is significantly greater than the value predicted by a cosmological picture in which baryonic disc scalelength scales with the virial radius of the dark matter halo.


Journal of Chemical Physics | 2013

Ions colliding with clusters of fullerenes - Decay pathways and covalent bond formations

Fabian Seitz; Henning Zettergren; Patrick Rousseau; Yang Wang; Tao Chen; Michael Gatchell; John D. Alexander; Mark H. Stockett; Jimmy Rangama; J.-Y. Chesnel; M. Capron; Jean-Christophe Poully; A. Domaracka; A. Méry; Sylvain Maclot; Violaine Vizcaino; H. T. Schmidt; L. Adoui; Manuel Alcamí; A. G. G. M. Tielens; Fernando Martín; B. A. Huber; H. Cederquist

We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.


Journal of Physical Chemistry Letters | 2015

Threshold Energies for Single Carbon Knockout from Polycyclic Aromatic Hydrocarbons

Mark H. Stockett; Michael Gatchell; Tao Chen; N. de Ruette; Linda Giacomozzi; M. Wolf; H. T. Schmidt; Henning Zettergren; H. Cederquist

We have measured absolute cross sections for ultrafast (femtosecond) single-carbon knockout from polycyclic aromatic hydrocarbon (PAH) cations as functions of He–PAH center-of-mass collision energy in the 10–200 eV range. Classical molecular dynamics (MD) simulations cover this range and extend up to 105 eV. The shapes of the knockout cross sections are well-described by a simple analytical expression yielding experimental and MD threshold energies of EthExp = 32.5 ± 0.4 eV and EthMD = 41.0 ± 0.3 eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated in vacuo. We further deduce semiempirical (SE) and MD displacement energies, i.e., the energy transfers to the PAH molecules at the threshold energies for knockout, of TdispSE = 23.3 ± 0.3 eV and TdispMD = 27.0 ± 0.3 eV. The semiempirical results compare favorably with measured displacement energies for graphene (Tdisp = 23.6 eV).


Physical Review A | 2015

Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

Michael Gatchell; Mark H. Stockett; N. de Ruette; Tao Chen; Linda Giacomozzi; R. F. Nascimento; M. Wolf; Emma Anderson; Rudy Delaunay; Violaine Vizcaino; Patrick Rousseau; L. Adoui; B. A. Huber; H. T. Schmidt; Henning Zettergren; H. Cederquist

A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C_24H_12+m^+ m=0–7, led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30–200 eV) He atoms and pyrene (C_16H_10+m^+, m=0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.

Collaboration


Dive into the Michael Gatchell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Chen

Stockholm University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Alcamí

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Wang

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge