Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Grunstein is active.

Publication


Featured researches published by Michael Grunstein.


Nature | 1997

Histone acetylation in chromatin structure and transcription

Michael Grunstein

The amino termini of histones extend from the nucleosomal core and are modified by acetyltransferases and deacetylases during the cell cycle. These acetylation patterns may direct histone assembly and help regulate the unfolding and activity of genes.


Cell Stem Cell | 2009

Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures

Mark H. Chin; Mike J. Mason; Wei Xie; Stefano Volinia; Mike Singer; Cory Peterson; G. Ambartsumyan; Otaren Aimiuwu; Laura Richter; Jin Zhang; Ivan Khvorostov; Vanessa Ott; Michael Grunstein; Neta Lavon; Nissim Benvenisty; Carlo M. Croce; Amander T. Clark; Tim Baxter; April D. Pyle; Michael A. Teitell; Matteo Pelegrini; Kathrin Plath; William E. Lowry

Induced pluripotent stem cells (iPSCs) outwardly appear to be indistinguishable from embryonic stem cells (ESCs). A study of gene expression profiles of mouse and human ESCs and iPSCs suggests that, while iPSCs are quite similar to their embryonic counterparts, a recurrent gene expression signature appears in iPSCs regardless of their origin or the method by which they were generated. Upon extended culture, hiPSCs adopt a gene expression profile more similar to hESCs; however, they still retain a gene expression signature unique from hESCs that extends to miRNA expression. Genome-wide data suggested that the iPSC signature gene expression differences are due to differential promoter binding by the reprogramming factors. High-resolution array profiling demonstrated that there is no common specific subkaryotypic alteration that is required for reprogramming and that reprogramming does not lead to genomic instability. Together, these data suggest that iPSCs should be considered a unique subtype of pluripotent cell.


Nature | 2005

Global histone modification patterns predict risk of prostate cancer recurrence

David Seligson; Steve Horvath; Tao Shi; Hong Yu; Sheila Tze; Michael Grunstein; Siavash K. Kurdistani

Aberrations in post-translational modifications of histones have been shown to occur in cancer cells but only at individual promoters; they have not been related to clinical outcome. Other than being targeted to promoters, modifications of histones, such as acetylation and methylation of lysine and arginine residues, also occur over large regions of chromatin including coding regions and non-promoter sequences, which are referred to as global histone modifications. Here we show that changes in global levels of individual histone modifications are also associated with cancer and that these changes are predictive of clinical outcome. Through immunohistochemical staining of primary prostatectomy tissue samples, we determined the percentage of cells that stained for the histone acetylation and dimethylation of five residues in histones H3 and H4. Grouping of samples with similar patterns of modifications identified two disease subtypes with distinct risks of tumour recurrence in patients with low-grade prostate cancer. These histone modification patterns were predictors of outcome independently of tumour stage, preoperative prostate-specific antigen levels, and capsule invasion. Thus, widespread changes in specific histone modifications indicate previously undescribed molecular heterogeneity in prostate cancer and might underlie the broad range of clinical behaviour in cancer patients.


Cell | 1995

Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast

Andreas Hecht; Thierry Laroche; Sabine Strahl-Bolsinger; Susan M. Gasser; Michael Grunstein

The silent mating loci and chromosomal regions adjacent to telomeres of S. cerevisiae have features similar to heterochromatin of more complex eukaryotes. Transcriptional repression at these sites depends on the silent information regulators SIR3 and SIR4 as well as histones H3 and H4. We show here that the SIR3 and SIR4 proteins interact with specific silencing domains of the H3 and H4 N-termini in vitro. Certain mutations in these factors, which affect their silencing functions in vivo, also disrupt their interactions in vitro. Immunofluorescence studies with antibodies against RAP1 and SIR3 demonstrate that the H3 and H4 N-termini are required for the association of SIR3 with telomeric chromatin and the perinuclear positioning of yeast telomeres. Based on these interactions, we propose a model for heterochromatin-mediated transcriptional silencing in yeast, which may serve as a paradigm for other eukaryotic organisms as well.


Cell | 2005

Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex

Michael Christopher Keogh; Siavash K. Kurdistani; Stephanie A. Morris; Seong Hoon Ahn; Vladimir Podolny; Sean R. Collins; Maya Schuldiner; Kayu Chin; Thanuja Punna; Natalie J. Thompson; Charles Boone; Andrew Emili; Jonathan S. Weissman; Timothy R. Hughes; Michael Grunstein; Jack Greenblatt; Stephen Buratowski; Nevan J. Krogan

The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes remarkably similar to those of Set2, a histone methyltransferase associated with elongating RNA polymerase II. Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions. This pathway apparently acts to negatively regulate transcription because deleting the genes for Set2 or Rpd3C(S) bypasses the requirement for the positive elongation factor Bur1/Bur2.


Nature Reviews Molecular Cell Biology | 2003

Histone acetylation and deacetylation in yeast

Siavash K. Kurdistani; Michael Grunstein

Histone acetylation and deacetylation in the yeast Saccharomyces cerevisiae occur by targeting acetyltransferase and deacetylase enzymes to gene promoters and, in an untargeted and global manner, by affecting most nucleosomes. Recently, new roles for histone acetylation have been uncovered, not only in transcription but also in DNA replication, repair and heterochromatin formation. Interestingly, specific acetylatable lysines can function as binding sites for regulatory factors. Moreover, histone deacetylation is not only repressive but can be required for gene activity.


Cell | 2004

Mapping Global Histone Acetylation Patterns to Gene Expression

Siavash K. Kurdistani; Saeed Tavazoie; Michael Grunstein

Histone acetyltransferases and deacetylases with specificities for different sites of acetylation affect common chromatin regions. This could generate unique patterns of acetylation that may specify downstream biological processes. To search for existence of these patterns and their relationship to gene activity, we analyzed the genome-wide acetylation profiles for eleven lysines in the four core histones of Saccharomyces cerevisiae. We find that both hyper- and hypoacetylation of individual lysines are associated with transcription, generating distinct patterns of acetylation that define groups of biologically related genes. The genes within these groups are significantly coexpressed, mediate similar physiological processes, share unique cis-regulatory DNA motifs, and are enriched for binding of specific transcription factors. Our data also indicate that the in vivo binding of the transcription factor Bdf1 is associated with acetylation on most lysines but relative deacetylation on H4 lysine 16. Thus, certain acetylation patterns may be used as surfaces for specific protein-histone interactions, providing one mechanism for coordinate regulation of chromatin processes that are biologically related.


Cell | 1999

Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast

Sophie G. Martin; Thierry Laroche; Noriyuki Suka; Michael Grunstein; Susan M. Gasser

Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.


Molecular Cell | 2001

Highly Specific Antibodies Determine Histone Acetylation Site Usage in Yeast Heterochromatin and Euchromatin

Noriyuki Suka; Yuko Suka; Andrew A. Carmen; Jiansheng Wu; Michael Grunstein

We have developed a highly specific antibody set for acetylation sites in yeast histones H4 (K5, K8, K12, and K16); H3 (K9, K14, K18, K23, and K27); H2A (K7); and H2B (K11 and K16). Since ELISA does not assure antibody specificity in chromatin immunoprecipitation, we have employed additional screens against the respective histone mutations. We now show that telomeric and silent mating locus heterochromatin is hypoacetylated at all histone sites. At the INO1 promoter, RPD3 is required for strongly deacetylating all sites except H4 K16, ESA1 for acetylating H2A, H2B, and H4 sites except H4 K16, and GCN5 for acetylating H2B and H3 sites except H3 K14. These data uncover the in vivo usage of acetylation sites in heterochromatin and euchromatin.


Nature | 1998

Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3

Stephen E. Rundlett; Andrew A. Carmen; Noriyuki Suka; Bryan M. Turner; Michael Grunstein

The histone deacetylase RPD3 can be targeted to certain genes through its interaction with DNA-binding regulatory proteins. RPD3 can then repress gene transcription. In the yeast Saccharomyces cerevisiae, association of RPD3 with the transcriptional repressors SIN3 and UME6 results in repression of reporter genes containing the UME6-binding site. RPD3 can deacetylate all histone H4 acetylation sites in cell extracts. However, it is unknown how H4 proteins located at genes near UME6-binding sites are affected, nor whether the effect of RPD3 is localized to the promoter regions. Here we study the mechanism by which RPD3 represses gene activity by examining the acetylation state of histone proteins at UME6-regulated genes. We used antibodies specific for individual acetylation sites in H4 to immunoprecipitate chromatin fragments. A deletion of RPD3 or SIN3, but not of the related histone-deacetylase gene HDA1, results in increased acetylation of the lysine 5 residue of H4 in the promoters of the UME6-regulated INO1 (ref. 8), IME2 (ref. 3) and SPO13 (ref. 9) genes. As increased acetylation of this residue is not merely a consequence of gene transcription, acetylation of this site may be essential for regulating gene activity.

Collaboration


Dive into the Michael Grunstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriyuki Suka

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiansheng Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Min Han

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Paul S. Kayne

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R K Mann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge