Noriyuki Suka
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noriyuki Suka.
Cell | 1999
Sophie G. Martin; Thierry Laroche; Noriyuki Suka; Michael Grunstein; Susan M. Gasser
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.
Molecular Cell | 2001
Noriyuki Suka; Yuko Suka; Andrew A. Carmen; Jiansheng Wu; Michael Grunstein
We have developed a highly specific antibody set for acetylation sites in yeast histones H4 (K5, K8, K12, and K16); H3 (K9, K14, K18, K23, and K27); H2A (K7); and H2B (K11 and K16). Since ELISA does not assure antibody specificity in chromatin immunoprecipitation, we have employed additional screens against the respective histone mutations. We now show that telomeric and silent mating locus heterochromatin is hypoacetylated at all histone sites. At the INO1 promoter, RPD3 is required for strongly deacetylating all sites except H4 K16, ESA1 for acetylating H2A, H2B, and H4 sites except H4 K16, and GCN5 for acetylating H2B and H3 sites except H3 K14. These data uncover the in vivo usage of acetylation sites in heterochromatin and euchromatin.
Nature | 1998
Stephen E. Rundlett; Andrew A. Carmen; Noriyuki Suka; Bryan M. Turner; Michael Grunstein
The histone deacetylase RPD3 can be targeted to certain genes through its interaction with DNA-binding regulatory proteins. RPD3 can then repress gene transcription. In the yeast Saccharomyces cerevisiae, association of RPD3 with the transcriptional repressors SIN3 and UME6 results in repression of reporter genes containing the UME6-binding site. RPD3 can deacetylate all histone H4 acetylation sites in cell extracts. However, it is unknown how H4 proteins located at genes near UME6-binding sites are affected, nor whether the effect of RPD3 is localized to the promoter regions. Here we study the mechanism by which RPD3 represses gene activity by examining the acetylation state of histone proteins at UME6-regulated genes. We used antibodies specific for individual acetylation sites in H4 to immunoprecipitate chromatin fragments. A deletion of RPD3 or SIN3, but not of the related histone-deacetylase gene HDA1, results in increased acetylation of the lysine 5 residue of H4 in the promoters of the UME6-regulated INO1 (ref. 8), IME2 (ref. 3) and SPO13 (ref. 9) genes. As increased acetylation of this residue is not merely a consequence of gene transcription, acetylation of this site may be essential for regulating gene activity.
Nature Genetics | 2002
Noriyuki Suka; Kunheng Luo; Michael Grunstein
The Sir3 protein helps form telomeric heterochromatin by interacting with hypoacetylated histone H4 lysine 16 (H4–Lys16). The molecular nature of the heterochromatin boundary is still unknown. Here we show that the MYST-like acetyltransferase Sas2p is required for the acetylation (Ac) of H4–Lys16 in euchromatin. In a sas2Δ strain or a phenocopy Lys16Arg mutant, Sir3p spreads from roughly 3 kb to roughly 15 kb, causing hypoacetylation and repression of adjacent chromatin. We also found that disruption of Sir3p binding in a deacetylase-deficient Sir 2Δ strain can be suppressed by sas2Δ. These data indicate that opposing effects of Sir2p and Sas2p on acetylation of H4–Lys16 maintain the boundary at telomeric heterochromatin.
Molecular Cell | 2001
Jiansheng Wu; Noriyuki Suka; Marian Carlson; Michael Grunstein
TUP1 is recruited to and represses genes that regulate mating, glucose and oxygen use, stress response, and DNA damage. It is shown here that disruption of either TUP1 or histone deacetylase HDA1 causes histone H3/H2B--specific hyperacetylation next to the TUP1 binding site at the stress-responsive ENA1 promoter. It is also shown that TUP1 interacts with HDA1 in vitro. These data indicate that TUP1 mediates localized histone deacetylation through HDA1. Interestingly, RPD3 deacetylates the ENA1 coding region, and both deacetylases contribute to ENA1 repression. However, epistasis analysis argues that only HDA1 and TUP1 are likely to function in the same pathway. These data define gene and histone targets of HDA1 and illustrate the role of histone deacetylation in TUP1 repression.
Molecular Cell | 2002
Arnold Kristjuhan; Jane Walker; Noriyuki Suka; Michael Grunstein; Douglas Roberts; Bradley R. Cairns; Jesper Q. Svejstrup
Changes in histone acetylation at promoters correlate with transcriptional activation and repression, but whether acetylation of histones in the coding region of genes is important for transcription is less clear. Here, we show that cells lacking the histone acetyltransferases Gcn5 and Elp3 have widespread and severe histone H3 hypoacetylation in chromatin. Surprisingly, severe hypoacetylation in the promoter does not invariably affect the ability of TBP to bind the TATA element, or transcription of the gene. By contrast, similar hypoacetylation of the coding region correlates with inhibition of transcription, and inhibition correlates better with the overall charge of the histone H3 tail than with hypoacetylation of specific lysine residues. These data provide insights into the effects of histone H3 hypoacetylation in vivo and underscore the importance of the overall charge of the histone tail for transcription.
Current Biology | 2003
Barbara G. Mellone; Leslie Ball; Noriyuki Suka; Michael R. Grunstein; Janet F. Partridge; Robin C. Allshire
BACKGROUND Centromeric domains often consist of repetitive elements that are assembled in specialized chromatin, characterized by hypoacetylation of histones H3 and H4 and methylation of lysine 9 of histone H3 (K9-MeH3). Perturbation of this underacetylated state by transient treatment with histone deacetylase inhibitors leads to defective centromere function, correlating with delocalization of the heterochromatin protein Swi6/HP1. Likewise, deletion of the K9-MeH3 methyltransferase Clr4/Suvar39 causes defective chromosome segregation. Here, we create fission yeast strains retaining one histone H3 and H4 gene; the creation of these strains allows mutation of specific N-terminal tail residues and their role in centromeric silencing and chromosome stability to be investigated. RESULTS Reduction of H3/H4 gene dosage to one-third does not affect cell viability or heterochromatin formation. Mutation of lysines 9 or 14 or serine 10 within the amino terminus of histone H3 impairs centromere function, leading to defective chromosome segregation and Swi6 delocalization. Surprisingly, silent centromeric chromatin does not require the conserved lysine 8 and 16 residues of histone H4. CONCLUSIONS To date, mutation of conserved N-terminal residues in endogenous histone genes has only been performed in budding yeast, which lacks the Clr4/Suvar39 histone methyltransferase and Swi6/HP1. We demonstrate the importance of conserved residues within the histone H3 N terminus for the maintenance of centromeric heterochromatin in fission yeast. In sharp contrast, mutation of two conserved lysines within the histone H4 tail has no impact on the integrity of centromeric heterochromatin. Our data highlight the striking divergence between the histone tail requirements for the fission yeast and budding yeast silencing pathways.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Jiansheng Wu; Andrew A. Carmen; Ryuji Kobayashi; Noriyuki Suka; Michael Grunstein
Histone deacetylase HDA1, the prototype for the class II mammalian deacetylases, is likely the catalytic subunit of the HDA1-containing complex that is involved in TUP1-specific repression and global deacetylation in yeast. Although the class I RPD3-like enzymatic complexes have been well characterized, little is known about the identity and interactions of the factors that associate to form the HDA1 complex. In this paper, we identify related HDA2 and HDA3 proteins that are found in the HDA1 complex and show that HDA1 interacts with itself and with the HDA2-HDA3 subcomplex to form a likely tetramer. These interactions are necessary for catalytic activity because mutations in any of the three components disrupt activity both in vitro and in vivo. In this respect the HDA1 complex differs from yeast RPD3, which has components such as SIN3 that are not essential for activity in vitro, and yeast HOS3, which has intrinsic in vitro activity as a homodimer in the absence of other subunits.
Yeast | 2005
Rie Sunada; Irene Görzer; Yukako Oma; Takahito Yoshida; Noriyuki Suka; Ulrike Wintersberger; Masahiko Harata
Chromatin remodelling and histone‐modifying complexes govern the modulation of chromatin structure. While components of these complexes are diverse, nuclear actin‐related proteins (Arps) have been repeatedly found in these complexes from yeast to mammals. In most cases, Arps are required for functioning of the complexes, but the molecular mechanisms of nuclear Arps have as yet been largely unknown. The Arps and actin, sharing a common ancestor, are supposed to be highly similar in the three‐dimensional structure of their core regions, including the ATP‐binding pocket. The Arp Act3p/Arp4p of Saccharomyces cerevisiae exists within the nucleus, partly as a component of several high molecular mass complexes, including the NuA4 histone acetyltransferase (HAT) complex, and partly as uncomplexed molecules. We observed that mutations in the putative ATP‐binding pocket of Act3p/Arp4p increased its concentration in the high molecular mass complexes and, conversely, that an excess of ATP or ATPγS led to the release of wild‐type Act3p/Arp4p from the complexes. These results suggest a requirement of ATP binding by Act3p/Arp4p for its dissociation from the complexes. In accordance, a mutation in the putative ATP binding site of Act3p/Arp4p inhibited the conversion of the NuA4 complex into the smaller piccoloNuA4, which does not contain Act3p/Arp4p and exhibits HAT activity distinct from that of NuA4. Although the in vitro binding activity of ATP by recombinant Act3p/Arp4p was found to be rather weak, our observations, taken together, suggest that the ATP‐binding pocket of Act3p/Arp4p is involved in the function of chromatin modulating complexes by regulating their dynamics. Copyright
Cell | 2002
Daniel Robyr; Yuko Suka; Ioannis Xenarios; Siavash K. Kurdistani; Amy T. Wang; Noriyuki Suka; Michael Grunstein