Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Elliott is active.

Publication


Featured researches published by Michael H. Elliott.


Diabetes | 2010

Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage

Juanjuan Wang; Xueliang Xu; Michael H. Elliott; Meili Zhu; Yun-Zheng Le

OBJECTIVE Vascular endothelial growth factor (VEGF-A or VEGF) is a major pathogenic factor and therapeutic target for diabetic retinopathy (DR). Since VEGF has been proposed as a survival factor for retinal neurons, defining the cellular origin of pathogenic VEGF is necessary for the effectiveness and safety of long-term anti-VEGF therapies for DR. To determine the significance of Müller cell-derived VEGF in DR, we disrupted VEGF in Müller cells with an inducible Cre/lox system and examined diabetes-induced retinal inflammation and vascular leakage in these conditional VEGF knockout (KO) mice. RESEARCH DESIGN AND METHODS Leukostasis was determined by counting the number of fluorescently labeled leukocytes inside retinal vasculature. Expression of biomarkers for retinal inflammation was assessed by immunoblotting of TNF-α, ICAM-1, and NF-κB. Vascular leakage was measured by immunoblotting of retinal albumin and fluorescent microscopic analysis of extravascular albumin. Diabetes-induced vascular alterations were examined by immunoblotting and immunohistochemistry for tight junctions, and by trypsin digestion assays for acellular capillaries. Retinal integrity was analyzed with morphologic and morphometric analyses. RESULTS Diabetic conditional VEGF KO mice exhibited significantly reduced leukostasis, expression of inflammatory biomarkers, depletion of tight junction proteins, numbers of acellular capillaries, and vascular leakage compared to diabetic control mice. CONCLUSIONS Müller cell-derived VEGF plays an essential and causative role in retinal inflammation, vascular lesions, and vascular leakage in DR. Therefore, Müller cells are a primary cellular target for proinflammatory signals that mediates retinal inflammation and vascular leakage in DR.


Free Radical Biology and Medicine | 2001

Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells

Sallyanne Davies; Michael H. Elliott; Eric Floor; T. George Truscott; Mariusz Zareba; Tadeusz Sarna; Farrukh A. Shamsi; Mike Boulton

Lipofuscin accumulates with age in a variety of highly metabolically active cells, including the retinal pigment epithelium (RPE) of the eye, where its photoreactivity has the potential for cellular damage. The aim of this study was to assess the phototoxic potential of lipofuscin in the retina. RPE cell cultures were fed isolated lipofuscin granules and maintained in basal medium for 7 d. Control cells lacking granules were cultured in an identical manner. Cultures were either maintained in the dark or exposed to visible light (2.8 mWcm2) at 37 degrees C for up to 48 h. Cells were subsequently assessed for alterations in cell morphology, cell viability, lysosomal stability, lipid peroxidation, and protein oxidation. Exposure of lipofuscin-fed cells to short wavelength visible light (390-550 nm) caused lipid peroxidation (increased levels of malondialdehyde and 4-hydroxy-nonenal), protein oxidation (protein carbonyl formation), loss of lysosomal integrity, cytoplasmic vacuolation, and membrane blebbing culminating in cell death. This effect was wavelength-dependent because light exposure at 550 to 800 nm had no adverse effect on lipofuscin-loaded cells. These results confirm the photoxicity of lipofuscin in a cellular system and implicate it in cell dysfunction such as occurs in ageing and retinal diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids

Martin Paul Agbaga; Richard S. Brush; Nawajes A. Mandal; K. Henry; Michael H. Elliott; Robert E. Anderson

Stargardt-like macular dystrophy (STGD3) is a dominantly inherited juvenile macular degeneration that eventually leads to loss of vision. Three independent mutations causing STGD3 have been identified in exon six of a gene named Elongation of very long chain fatty acids 4 (ELOVL4). The ELOVL4 protein was predicted to be involved in fatty acid elongation, although evidence for this and the specific step(s) it may catalyze have remained elusive. Here, using a gain-of-function approach, we provide direct and compelling evidence that ELOVL4 is required for the synthesis of C28 and C30 saturated fatty acids (VLC-FA) and of C28-C38 very long chain polyunsaturated fatty acids (VLC-PUFA), the latter being uniquely expressed in retina, sperm, and brain. Rat neonatal cardiomyocytes and a human retinal epithelium cell line (ARPE-19) were transduced with recombinant adenovirus type 5 carrying mouse Elovl4 and supplemented with 24:0, 20:5n3, or 22:5n3. The 24:0 was elongated to 28:0 and 30:0; 20:5n3 and 22:5n3 were elongated to a series of C28-C38 PUFA. Because retinal degeneration is the only known phenotype in STGD3 disease, we propose that reduced VLC-PUFA in the retinas of these patients may be the cause of photoreceptor cell death.


Free Radical Biology and Medicine | 2009

Curcumin protects retinal cells from light-and oxidant stress-induced cell death.

Nawajes A. Mandal; Jagan M.R. Patlolla; Lixin Zheng; Martin Paul Agbaga; Julie Thu A. Tran; Lea D. Wicker; Anne Kasus-Jacobi; Michael H. Elliott; Chinthalapally V. Rao; Robert E. Anderson

Age-related macular degeneration (AMD) is a complex disease that has potential involvement of inflammatory and oxidative stress-related pathways in its pathogenesis. In search of effective therapeutic agents, we tested curcumin, a naturally occurring compound with known anti-inflammatory and antioxidative properties, in a rat model of light-induced retinal degeneration (LIRD) and in retina-derived cell lines. We hypothesized that any compound effective against LIRD, which involves significant oxidative stress and inflammation, would be a candidate for further characterization for its potential application in AMD. We observed significant retinal neuroprotection in rats fed diets supplemented with curcumin (0.2% in diet) for 2 weeks. The mechanism of retinal protection from LIRD by curcumin involves inhibition of NF-kappaB activation and down-regulation of cellular inflammatory genes. When tested on retina-derived cell lines (661W and ARPE-19), pretreatment of curcumin protected these cells from H(2)O(2)-induced cell death by up-regulating cellular protective enzymes, such as HO-1, thioredoxin. Since, curcumin with its pleiotropic activities can modulate the expression and activation of many cellular regulatory proteins such as NF-kappaB, AKT, NRF2, and growth factors, which in turn inhibit cellular inflammatory responses and protect cells; we speculate that curcumin would be an effective nutraceutical compound for preventive and augmentative therapy of AMD.


Investigative Ophthalmology & Visual Science | 2012

Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Müller cells

Mingyuan Wu; Shihe Yang; Michael H. Elliott; Dongxu Fu; Kenneth Wilson; Jing Zhang; Mei Du; Junping Chen; Timothy Lyons

PURPOSE We previously showed that extravasated, modified LDL is implicated in pericyte loss in diabetic retinopathy (DR). Here, we investigate whether modified LDL induces apoptosis in retinal Müller glial cells. METHODS Cultured human retinal Müller cells (MIO-M1) were treated with highly oxidized glycated LDL (HOG-LDL, 200 mg protein/L) or native LDL (N-LDL, 200 mg protein/L) for up to 24 hours with or without pretreatment with N-acetyl-cysteine (NAC, a blocker of oxidative stress) and 4-phenylbutyrate (4-PBA, a blocker of endoplasmic reticulum [ER] stress). Effects of HOG-LDL on cell viability, apoptosis, oxidative stress, and ER stress were assessed by cell viability, TUNEL, and Western blot assays. In separate experiments, Müller cells were treated with 7-ketocholesterol (7-KC, 5-20 μM) or 4-hydroxynonenal (4-HNE, 5-40 μM) for up to 24 hours. The same markers were measured. RESULTS HOG-LDL induced apoptosis (decreased cell viability, increased TUNEL staining, increased expression of cleaved PARP, cleaved caspase-3, and BAX; decreased Bcl-2), oxidative stress (increased NOX4 and antioxidant enzymes, catalase, and superoxide dismutase 2), and ER stress (increased phospho-eIF2α, KDEL, ATF6, and CHOP). Pretreatment with NAC or 4-PBA partially attenuated apoptosis. In addition. NAC attenuated activation of ER stress. Similar to HOG-LDL, 7KC, and 4HNE also induced apoptosis, oxidative stress, and ER stress. CONCLUSIONS Our data suggest that extravasated, modified lipoproteins may be implicated in apoptotic Müller cell death, acting at least partially via enhanced levels of oxidative and ER stresses. They support our main hypothesis that, in addition to hyperglycemia, extravasated and oxidized LDL is an important insult to the diabetic retina.


Journal of Biological Chemistry | 2011

α-Phenyl-N-tert-butylnitrone (PBN) Prevents Light-induced Degeneration of the Retina by Inhibiting RPE65 Protein Isomerohydrolase Activity

Nawajes A. Mandal; Gennadiy Moiseyev; Michael H. Elliott; Anne Kasus-Jacobi; Xiaoman Li; Hui Chen; Lixin Zheng; Olga Nikolaeva; Robert A. Floyd; Jian Xing Ma; Robert E. Anderson

α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5–12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC50 = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with Ki = 53 μm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.


Journal of Biological Chemistry | 2012

Loss of Caveolin-1 Impairs Retinal Function Due to Disturbance of Subretinal Microenvironment

Xiaoman Li; M. E. McClellan; Masaki Tanito; Philippe Garteiser; Rheal A. Towner; David Bissig; Bruce A. Berkowitz; Steven J. Fliesler; Michael L. Woodruff; Gordon L. Fain; David G. Birch; M. Suhaib Khan; John D. Ash; Michael H. Elliott

Background: Caveolin-1 is widely expressed in the retina and is linked to ocular disease. Results: Loss of caveolin-1 results in defective retinal function and ion homeostasis that is not photoreceptor-intrinsic. Conclusion: Caveolin-1 expressed in non-neuronal cells (e.g. Müller glia, retinal pigment epithelium) supports neuronal function through regulating the subretinal microenvironment. Significance: This study provides key evidence that caveolin-1 maintains retinal homeostasis. Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K+ affinity of the RPE-expressed α1-Na+/K+-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.


Journal of Biological Chemistry | 2012

Leukemia Inhibitory Factor Coordinates the Down-regulation of the Visual Cycle in the Retina and Retinal-pigmented Epithelium

Ana J. Chucair-Elliott; Michael H. Elliott; Jiangang Wang; Gennadiy Moiseyev; Jian Xing Ma; Luis E. Politi; Nora P. Rotstein; Shizuo Akira; Satoshi Uematsu; John D. Ash

Background: Neurocytokines (LIF and CNTF) mediate photoreceptor protection and down-regulation of phototransduction. Results: LIF down-regulates the visual cycle decreasing RPE65 expression and activity through activation of STAT3 in RPE. Conclusion: The gp130/STAT3 pathway is independently modulated in RPE and retina for coordinated control of visual cycle activity. Significance: A single, endogenous paracrine factor (LIF) can stimulate RPE cells to reduce production of 11-cis-retinal. Leukemia inhibitory factor (LIF), an interleukin-6 family neurocytokine, is up-regulated in response to different types of retinal stress and has neuroprotective activity through activation of the gp130 receptor/STAT3 pathway. We observed that LIF induces rapid, robust, and sustained activation of STAT3 in both the retina and retinal pigmented epithelium (RPE). Here, we tested whether LIF-induced STAT3 activation within the RPE can down-regulate RPE65, the central enzyme in the visual cycle that provides the 11-cis-retinal chromophore to photoreceptors in vivo. We generated conditional knock-out mice to specifically delete STAT3 or gp130 in RPE, retina, or both RPE and retina. After intravitreal injection of LIF, we analyzed the expression levels of visual cycle genes and proteins, isomerase activity of RPE65, levels of rhodopsin protein, and the rates of dark adaptation and rhodopsin regeneration. We found that RPE65 protein levels and isomerase activity were reduced and recovery of bleachable rhodopsin was delayed in LIF-injected eyes. In mice with functional gp130/STAT3 signaling in the retina, rhodopsin protein was also reduced by LIF. However, the LIF-induced down-regulation of RPE65 required a functional gp130/STAT3 cascade intrinsic to RPE. Our data demonstrate that a single cytokine, LIF, can simultaneously and independently affect both RPE and photoreceptors through the same signaling cascade to reduce the generation and utilization of 11-cis-retinal.


Investigative Ophthalmology & Visual Science | 2010

Retinal Sphingolipids and Their Very-Long-Chain Fatty Acid-Containing Species

Richard S. Brush; Julie Thu A. Tran; Kimberly R. Henry; Mark E. McClellan; Michael H. Elliott; Nawajes A. Mandal

PURPOSE Recent evidence suggests that ceramide metabolism plays an important role in retinal photoreceptor cell survival and apoptosis. The purpose of this study was to characterize sphingolipids in the retina with special emphasis on the very-long-chain-containing saturated (VLC-FA) and polyunsaturated (VLC-PUFA) fatty acid-containing species. The VLC-FAs and VLC-PUFAs are synthesized by the ELOVL4 protein, which is involved in human Stargardts macular dystrophy type 3 (STGD3). METHODS Total lipids were extracted from retina and other tissues, and different sphingolipid classes were isolated and purified using various combinations of liquid- and solid-phase separation. Purified sphingolipids were analyzed by high-performance thin layer chromatography (HPTLC), gas chromatography (GC), and GC-MS (GC-mass spectrometry). RESULTS Nonsialylated sphingolipids (NSLs) comprised approximately 3.5% of total retinal lipids of which 70% was sphingomyelin. Ceramide and glycosylceramides (GCs) constituted<or=1% of total retinal lipids. Gangliosides (GGs), on the other hand, comprised approximately 3.0% of total retinal lipids. Fatty acid analysis of retinal NSLs indicated an abundance of saturated fatty acids, with the presence of VLC-FAs but not of VLC-PUFAs beyond 24 carbons. However, GG had significant levels of unsaturated, polyunsaturated, and VLC-PUFAs. Retinal rod outer segments (ROS) contained approximately 1% each of NSL and GG, and their fatty acid profile was not very different from whole retinal NSL and GG, respectively. CONCLUSIONS Retina has a total of 6% to 7% fatty acids that are N-linked to a sphingosine, which would be 11 to 13 mole % in comparison to phospholipids. The presence of VLC-FAs and VLC-PUFAs in retinal sphingolipids indicates that they may play role in ELOVL4-mediated Stargardt 3.


American Journal of Pathology | 2014

Peroxisome Proliferator–Activated Receptor α Protects Capillary Pericytes in the Retina

Lexi Ding; Rui Cheng; Yang Hu; Yusuke Takahashi; Alicia J. Jenkins; Anthony Keech; Kenneth M. Humphries; Xiaowu Gu; Michael H. Elliott; Xiaobo Xia; Jian Xing Ma

Pericyte degeneration is an early event in diabetic retinopathy and plays an important role in progression of diabetic retinopathy. Clinical studies have shown that fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has robust therapeutic effects on diabetic retinopathy in type 2 diabetic patients. We evaluated the protective effect of PPARα against pericyte loss in diabetic retinopathy. In streptozotocin-induced diabetic mice, fenofibrate treatment significantly ameliorated retinal acellular capillary formation and pericyte loss. In contrast, PPARα(-/-) mice with diabetes developed more severe retinal acellular capillary formation and pericyte dropout, compared with diabetic wild-type mice. Furthermore, PPARα knockout abolished the protective effect of fenofibrate against diabetes-induced retinal pericyte loss. In cultured primary human retinal capillary pericytes, activation and expression of PPARα both significantly reduced oxidative stress-induced apoptosis, decreased reactive oxygen species production, and down-regulated NAD(P)H oxidase 4 expression through blockade of NF-κB activation. Furthermore, activation and expression of PPARα both attenuated the oxidant-induced suppression of mitochondrial O2 consumption in human retinal capillary pericytes. Primary retinal pericytes from PPARα(-/-) mice displayed more apoptosis, compared with those from wild-type mice under the same oxidative stress. These findings identified a protective effect of PPARα on retinal pericytes, a novel function of endogenous PPARα in the retina.

Collaboration


Dive into the Michael H. Elliott's collaboration.

Top Co-Authors

Avatar

Robert E. Anderson

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Xiaowu Gu

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Richard S. Brush

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nawajes A. Mandal

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Mark E. McClellan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Alaina Reagan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

John D. Ash

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Alex Cohen

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Daniel J. J. Carr

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge