Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard S. Brush is active.

Publication


Featured researches published by Richard S. Brush.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids

Martin Paul Agbaga; Richard S. Brush; Nawajes A. Mandal; K. Henry; Michael H. Elliott; Robert E. Anderson

Stargardt-like macular dystrophy (STGD3) is a dominantly inherited juvenile macular degeneration that eventually leads to loss of vision. Three independent mutations causing STGD3 have been identified in exon six of a gene named Elongation of very long chain fatty acids 4 (ELOVL4). The ELOVL4 protein was predicted to be involved in fatty acid elongation, although evidence for this and the specific step(s) it may catalyze have remained elusive. Here, using a gain-of-function approach, we provide direct and compelling evidence that ELOVL4 is required for the synthesis of C28 and C30 saturated fatty acids (VLC-FA) and of C28-C38 very long chain polyunsaturated fatty acids (VLC-PUFA), the latter being uniquely expressed in retina, sperm, and brain. Rat neonatal cardiomyocytes and a human retinal epithelium cell line (ARPE-19) were transduced with recombinant adenovirus type 5 carrying mouse Elovl4 and supplemented with 24:0, 20:5n3, or 22:5n3. The 24:0 was elongated to 28:0 and 30:0; 20:5n3 and 22:5n3 were elongated to a series of C28-C38 PUFA. Because retinal degeneration is the only known phenotype in STGD3 disease, we propose that reduced VLC-PUFA in the retinas of these patients may be the cause of photoreceptor cell death.


Journal of Lipid Research | 2010

Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice

Manuel Roqueta-Rivera; Chad K. Stroud; Wanda M. Haschek; Sandeep J. Akare; Mariangela Segre; Richard S. Brush; Martin Paul Agbaga; Robert E. Anderson; Rex A. Hess; Manabu T. Nakamura

Delta-6 desaturase-null mice (−/−) are unable to synthesize highly unsaturated fatty acids (HUFAs): arachidonic acid (AA), docosahexaenoic acid (DHA), and n6-docosapentaenoic acid (DPAn6). The −/− males exhibit infertility and arrest of spermatogenesis at late spermiogenesis. To determine which HUFA is essential for spermiogenesis, a diet supplemented with either 0.2% (w/w) AA or DHA was fed to wild-type (+/+) and −/− males at weaning until 16 weeks of age (n = 3–5). A breeding success rate of DHA-supplemented −/− was comparable to +/+. DHA-fed −/− showed normal sperm counts and spermiogenesis. Dietary AA was less effective in restoring fertility, sperm count, and spermiogenesis than DHA. Testis fatty acid analysis showed restored DHA in DHA-fed −/−, but DPAn6 remained depleted. In AA-fed −/−, AA was restored at the +/+ level, and 22:4n6, an AA elongated product, accumulated in testis. Cholesta-3,5-diene was present in testis of +/+ and DHA-fed −/−, whereas it diminished in −/− and AA-fed −/−, suggesting impaired sterol metabolism in these groups. Expression of spermiogenesis marker genes was largely normal in all groups. In conclusion, DHA was capable of restoring all observed impairment in male reproduction, whereas 22:4n6 formed from dietary AA may act as an inferior substitute for DHA.


Biophysical Journal | 2009

Overexpression of Rhodopsin Alters the Structure and Photoresponse of Rod Photoreceptors

Xiao-Hong Wen; Lixin Shen; Richard S. Brush; Norman Michaud; Muayyad R. Al-Ubaidi; Vsevolod V. Gurevich; Heidi E. Hamm; Janis Lem; Emmanuele DiBenedetto; Robert E. Anderson; Clint L. Makino

Rhodopsins are densely packed in rod outer-segment membranes to maximize photon absorption, but this arrangement interferes with transducin activation by restricting the mobility of both proteins. We attempted to explore this phenomenon in transgenic mice that overexpressed rhodopsin in their rods. Photon capture was improved, and, for a given number of photoisomerizations, bright-flash responses rose more gradually with a reduction in amplification--but not because rhodopsins were more tightly packed in the membrane. Instead, rods increased their outer-segment diameters, accommodating the extra rhodopsins without changing the rhodopsin packing density. Because the expression of other phototransduction proteins did not increase, transducin and its effector phosphodiesterase were distributed over a larger surface area. That feature, as well as an increase in cytosolic volume, was responsible for delaying the onset of the photoresponse and for attenuating its amplification.


Journal of Neurochemistry | 2008

Lipidomic Analysis of the Retina in a Rat Model of Smith-Lemli-Opitz Syndrome: Alterations in Docosahexaenoic Acid Content of Phospholipid Molecular Species

David A. Ford; Julie K. Monda; Richard S. Brush; Robert E. Anderson; Michael J. Richards; Steven J. Fliesler

Smith–Lemli–Opitz syndrome (SLOS) is a complex hereditary disease caused by an enzymatic defect in the last step of cholesterol biosynthesis. Progressive retinal degeneration occurs in an AY9944‐induced rat model of SLOS, with biochemical and electroretinographic hallmarks comparable with the human disease. We evaluated alterations in the non‐sterol lipid components of the retina in this model, compared with age‐matched controls, using lipidomic analysis. The levels of 16:0–22:6 and 18:0–22:6 phosphatidylcholine molecular species in retinas were less by > 50% and > 33%, respectively, in rats treated for either 2 or 3 months with AY9944. Relative to controls, AY9944 treatment resulted in > 60% less di‐22:6 and > 15% less 18:0–22:6 phosphatidylethanolamine molecular species. The predominant phosphatidylserine (PS) molecular species in control retinas were 18:0–22:6 and di‐22:6; notably, AY9944 treatment resulted in > 80% less di‐22:6 PS, relative to controls. Remarkably, these changes occurred in the absence of n3 fatty acid deficiency in plasma or liver. Thus, the retinal lipidome is globally altered in the SLOS rat model, relative to control rats, with the most profound changes being less phosphatidylcholine, phosphatidylethanolamine, and PS molecular species containing docosahexaenoic acid (22:6). These findings suggest that SLOS may involve additional metabolic compromise beyond the primary enzymatic defect in the cholesterol pathway.


Investigative Ophthalmology & Visual Science | 2010

Retinal Sphingolipids and Their Very-Long-Chain Fatty Acid-Containing Species

Richard S. Brush; Julie Thu A. Tran; Kimberly R. Henry; Mark E. McClellan; Michael H. Elliott; Nawajes A. Mandal

PURPOSE Recent evidence suggests that ceramide metabolism plays an important role in retinal photoreceptor cell survival and apoptosis. The purpose of this study was to characterize sphingolipids in the retina with special emphasis on the very-long-chain-containing saturated (VLC-FA) and polyunsaturated (VLC-PUFA) fatty acid-containing species. The VLC-FAs and VLC-PUFAs are synthesized by the ELOVL4 protein, which is involved in human Stargardts macular dystrophy type 3 (STGD3). METHODS Total lipids were extracted from retina and other tissues, and different sphingolipid classes were isolated and purified using various combinations of liquid- and solid-phase separation. Purified sphingolipids were analyzed by high-performance thin layer chromatography (HPTLC), gas chromatography (GC), and GC-MS (GC-mass spectrometry). RESULTS Nonsialylated sphingolipids (NSLs) comprised approximately 3.5% of total retinal lipids of which 70% was sphingomyelin. Ceramide and glycosylceramides (GCs) constituted<or=1% of total retinal lipids. Gangliosides (GGs), on the other hand, comprised approximately 3.0% of total retinal lipids. Fatty acid analysis of retinal NSLs indicated an abundance of saturated fatty acids, with the presence of VLC-FAs but not of VLC-PUFAs beyond 24 carbons. However, GG had significant levels of unsaturated, polyunsaturated, and VLC-PUFAs. Retinal rod outer segments (ROS) contained approximately 1% each of NSL and GG, and their fatty acid profile was not very different from whole retinal NSL and GG, respectively. CONCLUSIONS Retina has a total of 6% to 7% fatty acids that are N-linked to a sphingosine, which would be 11 to 13 mole % in comparison to phospholipids. The presence of VLC-FAs and VLC-PUFAs in retinal sphingolipids indicates that they may play role in ELOVL4-mediated Stargardt 3.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Deciphering mutant ELOVL4 activity in autosomal-dominant Stargardt macular dystrophy

Sreemathi Logan; Martin Paul Agbaga; Michael D. Chan; Nabila Kabir; Nawajes A. Mandal; Richard S. Brush; Robert E. Anderson

Autosomal-dominant Stargardt-like macular dystrophy [Stargardt3 (STGD3)] results from single allelic mutations in the elongation of very-long–chain fatty acids-like 4 (ELOVL4), whereas recessive mutations lead to skin and brain dysfunction. ELOVL4 protein localizes to the endoplasmic reticulum, where it mediates the condensation reaction catalyzing the formation of very-long–chain (VLC) (C-28 to C-40) fatty acids, saturated and polyunsaturated (PUFA). The defective gene product is truncated at the C terminus, leading to mislocalization and aggregation in other organelles. We hypothesized that the STGD3 truncated mutant may generate mislocalized, and therefore toxic, keto intermediates of fatty acid elongation, thereby contributing to the disease process. Using cell-based and cell-free microsome assays, we found that the truncated protein lacked innate condensation activity. Coexpression of different forms of wild-type and mutant ELOVL4 revealed a large dominant-negative effect of mutant protein on ELOVL4 localization and enzymatic activity, resulting in reduced VLC-PUFA synthesis. The reduction in VLC-PUFA levels in STGD3 and age-related macular degeneration may be a contributing factor to their retinal pathology.


Osteoarthritis and Cartilage | 2014

Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice

Angela Cai; Erin Hutchison; Joanna Hudson; Yusuke Kawashima; Naoka Komori; Anil Singh; Richard S. Brush; Robert E. Anderson; William E. Sonntag; Hiroyuki Matsumoto; Timothy M. Griffin

OBJECTIVE We evaluated the effect of a reduction in the systemic ratio of n-6:n-3 polyunsaturated fatty acids (PUFAs) on changes in inflammation, glucose metabolism, and the idiopathic development of knee osteoarthritis (OA) in mice. We hypothesized that a lower ratio of n-6:n-3 PUFAs would protect against OA markers in cartilage and synovium, but not bone. DESIGN Male and female fat-1 transgenic mice (Fat-1), which convert dietary n-6 to n-3 PUFAs endogenously, and their wild-type (WT) littermates were fed an n-6 PUFA enriched diet for 9-14 months. The effect of gender and genotype on serum PUFAs, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and glucose tolerance was tested by 2-factor analysis of variance (ANOVA). Cortical and trabecular subchondral bone changes were documented by micro-focal computed tomography (CT), and knee OA was assessed by semi-quantitative histomorphometry grading. RESULTS The n-6:n-3 ratio was reduced 12-fold and 7-fold in male and female Fat-1 mice, respectively, compared to WT littermates. IL-6 and TNF-α levels were reduced modestly in Fat-1 mice. However, these systemic changes did not reduce osteophyte development, synovial hyperplasia, or cartilage degeneration. Also the fat-1 transgene did not alter subchondral cortical or trabecular bone morphology or bone mineral density. CONCLUSIONS Reducing the systemic n-6:n-3 ratio does not slow idiopathic changes in cartilage, synovium, or bone associated with early-stage knee OA in mice. The anti-inflammatory and anti-catabolic effects of n-3 PUFAs previously reported for cartilage may be more evident at later stages of disease or in post-traumatic and other inflammatory models of OA.


American Journal of Physiology-endocrinology and Metabolism | 2008

Failure of adrenal corticosterone production in POMC-deficient mice results from lack of integrated effects of POMC peptides on multiple factors

Jason Karpac; Katarzyna Czyzewska; Andras Kern; Richard S. Brush; Robert E. Anderson; Ute Hochgeschwender

Production of corticosteroids from the adrenal gland is a multistep process in which corticosterone is enzymatically processed from its precursor cholesterol. The main hormone regulating the production of corticosterone is the proopiomelanocortin (POMC)-derived adrenocorticotropic hormone (ACTH). Adrenals of POMC-deficient (POMC(-/-)) mice do not produce corticosterone either at basal levels or in response to acute stimulation with ACTH. However, pharmacological amounts of ACTH delivered continuously elicit corticosterone production over time. To define the relative effects of ACTH on individual factors involved in corticosterone production, parameters of adrenal cholesterol metabolism and steroidogenesis were examined in POMC(-/-) mice compared with wild-type and ACTH-treated mutant mice. POMC(-/-) adrenals lack cholesterol esters (CE); adrenal CE is restored with ACTH treatment. However, discontinuation of ACTH treatment stops corticosterone production despite the presence of adrenal CE. Failure of corticosterone production by POMC(-/-) adrenals occurs despite the constitutive presence of transcripts of genes required for cholesterol metabolism and steroidogenesis. Levels of key proteins involved in selective cholesterol uptake and steroidogenesis were attenuated; ACTH treatment increased these protein levels, most significantly those of the receptor responsible for selective uptake of CE, scavenger receptor class B, type I (SR-BI). Our studies reveal that failure of corticosterone production of POMC(-/-) adrenal glands and its pharmacological reconstitution by ACTH are not mediated by any one individual protein, but rather as an integrated effect on multiple factors from import of the substrate cholesterol to its conversion to corticosterone.


Advances in Experimental Medicine and Biology | 2012

Ceramide Signaling in Retinal Degeneration

Hui Chen; Julie Thu A. Tran; Richard S. Brush; Anisse Saadi; Abul K. Rahman; Man Yu; Douglas Yasumura; Michael T. Matthes; Kelly Ahern; Haidong Yang; Matthew M. LaVail; Nawajes A. Mandal

Retinal degenerations (RD) are a complex heterogeneous group of diseases in which retinal photoreceptors and the supporting retinal pigment epithelial cells die irreversibly, causing visual loss for millions of people. Mutations on more than 150 genes have been discovered for RD and there are many forms that possess complex etiology involving more than one gene and environmental effect. For years, many have searched for some common intracellular second messenger for these many forms of cell death which could be targeted for therapy. Ceramide is a novel cellular second messenger which signals for apoptosis. Several lines of evidence suggest an integral role of ceramide in photoreceptor apoptosis and cell death. Understanding their role in the pathogenic pathways of retinal degenerative diseases is important for development of targeted therapeutics.


Journal of Lipid Research | 2014

Endoplasmic reticulum microenvironment and conserved histidines govern ELOVL4 fatty acid elongase activity

Sreemathi Logan; Martin-Paul Agbaga; Michael D. Chan; Richard S. Brush; Robert E. Anderson

Autosomal dominant Stargardt-like macular dystrophy (STGD3) in humans results from mutations in elongation of very long chain FAs-like 4 (ELOVL4), which leads to vision loss in young adults. ELOVL4 is an integral endoplasmic reticulum (ER) protein that mediates the elongation of very long chain (VLC) FAs. Mutations in ELOVL4 lead to truncation and mislocalization of the translated protein from the ER, the site of FA elongation. Little is known about the enzymatic elongation of VLC-FAs by ELOVL4. We over-expressed full-length mouse ELOVL4, an N-glycosylation-deficient mutant, an ER-retention mutant, and mutants of active site histidines to parse their individual roles in VLC-FA elongation. ELOVL4 elongated appropriate precursors to the corresponding VLC-FA species ≥28 carbons. Active site histidine mutants of ELOVL4 did not elongate appropriate precursors, establishing ELOVL4 as the elongase. Displacing ELOVL4 from the ER was sufficient to cause loss of condensation activity, while absence of N-glycosylation was irrelevant for enzyme function. This study shows that ELOVL4 enzymatic activity is governed by individual histidines in its active site and the ER microenvironment, both of which are essential for elongation of VLC-FAs.

Collaboration


Dive into the Richard S. Brush's collaboration.

Top Co-Authors

Avatar

Robert E. Anderson

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Michael H. Elliott

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nawajes A. Mandal

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blake R. Hopiavuori

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly R. Henry

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sreemathi Logan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Feng Li

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge