Michael H. Matho
La Jolla Institute for Allergy and Immunology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael H. Matho.
Journal of Clinical Investigation | 2012
Jun-ichi Kashiwakura; Tomoaki Ando; Kenji Matsumoto; Miho Kimura; Jiro Kitaura; Michael H. Matho; Dirk M. Zajonc; Tomomitsu Ozeki; Chisei Ra; Susan M. MacDonald; Reuben P. Siraganian; David H. Broide; Yuko Kawakami; Toshiaki Kawakami
IgE-mediated activation of mast cells and basophils underlies allergic diseases such as asthma. Histamine-releasing factor (HRF; also known as translationally controlled tumor protein [TCTP] and fortilin) has been implicated in late-phase allergic reactions (LPRs) and chronic allergic inflammation, but its functions during asthma are not well understood. Here, we identified a subset of IgE and IgG antibodies as HRF-interacting molecules in vitro. HRF was able to dimerize and bind to Igs via interactions of its N-terminal and internal regions with the Fab region of Igs. Therefore, HRF together with HRF-reactive IgE was able to activate mast cells in vitro. In mouse models of asthma and allergy, Ig-interacting HRF peptides that were shown to block HRF/Ig interactions in vitro inhibited IgE/HRF-induced mast cell activation and in vivo cutaneous anaphylaxis and airway inflammation. Intranasally administered HRF recruited inflammatory immune cells to the lung in naive mice in a mast cell- and Fc receptor-dependent manner. These results indicate that HRF has a proinflammatory role in asthma and skin immediate hypersensitivity, leading us to suggest HRF as a potential therapeutic target.
Mucosal Immunology | 2015
Ildefonso Vicente-Suarez; Alexandre Larange; Colin Reardon; Michael H. Matho; Sonia Feau; Grzegorz Chodaczek; Yunji Park; Yuuki Obata; Rebecca Gold; Yiran Wang-Zhu; Chris Lena; Dirk M. Zajonc; Stephen P. Schoenberger; Mitchell Kronenberg; Hilde Cheroutre
Mucosal dendritic cells (DCs) in the intestine acquire the unique capacity to produce retinoic acid (RA), a vitamin A metabolite that induces gut tropism and regulates the functional differentiation of the T cells they prime. Here, we identified a stromal cell (SC) population in the intestinal lamina propria (LP), which is capable of inducing RA production in DCs in a RA- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent fashion. Unlike DCs, LP SCs constitutively expressed the enzymatic machinery to produce RA even in the absence of dietary vitamin A, but were not able to do so in germ-free mice implying regulation by microbiota. Interestingly, DCs promoted GM-CSF production by the SCs indicating a two-way cross-talk between both cell types. Furthermore, RA-producing LP SCs and intestinal DCs localized closely in vivo suggesting that the interactions between both cell types might have an important role in the functional education of migratory DCs and therefore in the regulation of immune responses toward oral and commensal antigens.
Journal of Virology | 2012
Michael H. Matho; Matt Maybeno; Mohammed Rafii-El-Idrissi Benhnia; Danielle Becker; Xiangzhi Meng; Yan Xiang; Shane Crotty; Bjoern Peters; Dirk M. Zajonc
ABSTRACT Smallpox vaccine is considered a gold standard of vaccines, as it is the only one that has led to the complete eradication of an infectious disease from the human population. B cell responses are critical for the protective immunity induced by the vaccine, yet their targeted epitopes recognized in humans remain poorly described. Here we describe the biochemical and structural characterization of one of the immunodominant vaccinia virus (VACV) antigens, D8, and its binding to the monoclonal antibody LA5, which is capable of neutralizing VACV in the presence of complement. The full-length D8 ectodomain was found to form a tetramer. We determined the crystal structure of the LA5 Fab-monomeric D8 complex at a resolution of 2.1 Å, as well as the unliganded structures of D8 and LA5-Fab at resolutions of 1.42 Å and 1.6 Å, respectively. D8 features a carbonic anhydrase (CAH) fold that has evolved to bind to the glycosaminoglycan (GAG) chondroitin sulfate (CS) on host cells. The central positively charged crevice of D8 was predicted to be the CS binding site by automated docking experiments. Furthermore, sequence alignment of various poxvirus D8 orthologs revealed that this crevice is structurally conserved. The D8 epitope is formed by 23 discontinuous residues that are spread across 80% of the D8 protein sequence. Interestingly, LA5 binds with a high-affinity lock-and-key mechanism above this crevice with an unusually large antibody-antigen interface, burying 2,434 Å2 of protein surface.
Journal of Virology | 2014
Thomas Kaever; Xiangzhi Meng; Michael H. Matho; Andrew Schlossman; Sheng Li; Inbal Sela-Culang; Yanay Ofran; Mark Buller; Ryan W. Crump; Scott Parker; April Frazier; Shane Crotty; Dirk M. Zajonc; Bjoern Peters; Yan Xiang
ABSTRACT Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic principle of successful vaccines and the development of next-generation, safer vaccines for highly pathogenic orthopoxviruses. We studied antibody targets in smallpox vaccine by developing potent neutralizing antibodies against vaccinia virus and comprehensively characterizing their epitopes. We found a site in vaccinia virus L1 protein as the target of a group of highly potent murine neutralizing antibodies. The analysis of antibody-antigen complex structure and the sequences of the antibody genes shed light on how these potent neutralizing antibodies are elicited from immunized mice.
Journal of Virology | 2013
Mohammed Rafii El Idrissi Benhnia; Matthew Maybeno; David L. Blum; Rowena O. Aguilar-Sino; Michael H. Matho; Xiangzhi Meng; Steven R. Head; Philip L. Felgner; Dirk M. Zajonc; Lilia Koriazova; Shin-ichiro Kato; Dennis R. Burton; Yan Xiang; James E. Crowe; Bjoern Peters; Shane Crotty
ABSTRACT The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201–1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
PLOS Pathogens | 2015
Michael H. Matho; Andrew Schlossman; Xiangzhi Meng; Mohammed Rafii El Idrissi Benhnia; Thomas Kaever; Mark Buller; Konstantin Doronin; Scott Parker; Bjoern Peters; Shane Crotty; Yan Xiang; Dirk M. Zajonc
Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus.
Journal of Virology | 2016
Thomas Kaever; Michael H. Matho; Xiangzhi Meng; Lindsay Crickard; Andrew Schlossman; Yan Xiang; Shane Crotty; Bjoern Peters; Dirk M. Zajonc
ABSTRACT Vaccinia virus (VACV) A27 is a target for viral neutralization and part of the Dryvax smallpox vaccine. A27 is one of the three glycosaminoglycan (GAG) adhesion molecules and binds to heparan sulfate. To understand the function of anti-A27 antibodies, especially their protective capacity and their interaction with A27, we generated and subsequently characterized 7 murine monoclonal antibodies (MAbs), which fell into 4 distinct epitope groups (groups I to IV). The MAbs in three groups (groups I, III, and IV) bound to linear peptides, while the MAbs in group II bound only to VACV lysate and recombinant A27, suggesting that they recognized a conformational and discontinuous epitope. Only group I antibodies neutralized the mature virion in a complement-dependent manner and protected against VACV challenge, while a group II MAb partially protected against VACV challenge but did not neutralize the mature virion. The epitope for group I MAbs was mapped to a region adjacent to the GAG binding site, a finding which suggests that group I MAbs could potentially interfere with the cellular adhesion of A27. We further determined the crystal structure of the neutralizing group I MAb 1G6, as well as the nonneutralizing group IV MAb 8E3, bound to the corresponding linear epitope-containing peptides. Both the light and the heavy chains of the antibodies are important in binding to their antigens. For both antibodies, the L1 loop seems to dominate the overall polar interactions with the antigen, while for MAb 8E3, the light chain generally appears to make more contacts with the antigen. IMPORTANCE Vaccinia virus is a powerful model to study antibody responses upon vaccination, since its use as the smallpox vaccine led to the eradication of one of the worlds greatest killers. The immunodominant antigens that elicit the protective antibodies are known, yet for many of these antigens, little information about their precise interaction with antibodies is available. In an attempt to better understand the interplay between the antibodies and their antigens, we generated and functionally characterized a panel of anti-A27 antibodies and studied their interaction with the epitope using X-ray crystallography. We identified one protective antibody that binds adjacent to the heparan sulfate binding site of A27, likely affecting ligand binding. Analysis of the antibody-antigen interaction supports a model in which antibodies that can interfere with the functional activity of the antigen are more likely to confer protection than those that bind at the extremities of the antigen.
PLOS Pathogens | 2014
Michael H. Matho; Natalia de Val; Gregory M. Miller; Joshua M. Brown; Andrew Schlossman; Xiangzhi Meng; Shane Crotty; Bjoern Peters; Yan Xiang; Linda C. Hsieh-Wilson; Andrew B. Ward; Dirk M. Zajonc
The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4′ and 6′ of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.
Journal of Biological Chemistry | 2018
Michael H. Matho; Andrew Schlossman; Iuliia Gilchuk; Greg Miller; Zbigniew Mikulski; Matthias Hupfer; Jing Wang; Aruna Bitra; Xiangzhi Meng; Yan Xiang; Tom Kaever; Tzanko I. Doukov; Klaus Ley; Shane Crotty; Bjoern Peters; Linda C. Hsieh-Wilson; James E. Crowe; Dirk M. Zajonc
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138– and VACV-304–binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.
Structure | 2014
Inbal Sela-Culang; Mohammed Rafii El Idrissi Benhnia; Michael H. Matho; Thomas Kaever; Matt Maybeno; Andrew Schlossman; Guy Nimrod; Sheng Li; Yan Xiang; Dirk M. Zajonc; Shane Crotty; Yanay Ofran; Bjoern Peters
Collaboration
Dive into the Michael H. Matho's collaboration.
Mohammed Rafii El Idrissi Benhnia
La Jolla Institute for Allergy and Immunology
View shared research outputs