Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shane Crotty is active.

Publication


Featured researches published by Shane Crotty.


Annual Review of Immunology | 2011

Follicular helper CD4 T cells (TFH).

Shane Crotty

T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).


Science | 2009

Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation.

Robert J. Johnston; Amanda C. Poholek; Daniel DiToro; Isharat Yusuf; Danelle Eto; Burton Barnett; Alexander L. Dent; Joe Craft; Shane Crotty

T Follicular Helper Cell Differentiation When B cells respond to an infection, they often require help from CD4+ T cells to mount a proper response. It is thought that a subset of CD4+ effector T cells, called T follicular helper cells (TFH), performs this function. Several subsets of effector CD4+ T cells arise, depending on the type of infection, which have distinct transcriptional programs driving their differentiation. Whether this is also the case for TFH cells has not been clear (see the Perspective by Awasthi and Kuchroo). Nurieva et al. (p. 1001, published online 23 July) and Johnston et al. (p. 1006; published online 16 July) now demonstrate that the transcription factor Bcl6 is both necessary and sufficient for TFH differentiation and subsequent B cell–mediated immunity, suggesting that it is a master regulator of this lineage. Johnston et al. also show that expression of Bcl6 and the transcription factor, Blimp-1, are reciprocally regulated in TFH cells and that, when ectopically expressed, Blimp-1 inhibits TFH development. The transcription factors that regulate follicular T helper cell differentiation are identified. Effective B cell–mediated immunity and antibody responses often require help from CD4+ T cells. It is thought that a distinct CD4+ effector T cell subset, called T follicular helper cells (TFH), provides this help; however, the molecular requirements for TFH differentiation are unknown. We found that expression of the transcription factor Bcl6 in CD4+ T cells is both necessary and sufficient for in vivo TFH differentiation and T cell help to B cells in mice. In contrast, the transcription factor Blimp-1, an antagonist of Bcl6, inhibits TFH differentiation and help, thereby preventing B cell germinal center and antibody responses. These findings demonstrate that TFH cells are required for proper B cell responses in vivo and that Bcl6 and Blimp-1 play central but opposing roles in TFH differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

RNA virus error catastrophe: Direct molecular test by using ribavirin

Shane Crotty; Craig E. Cameron; Raul Andino

RNA viruses evolve rapidly. One source of this ability to rapidly change is the apparently high mutation frequency in RNA virus populations. A high mutation frequency is a central tenet of the quasispecies theory. A corollary of the quasispecies theory postulates that, given their high mutation frequency, animal RNA viruses may be susceptible to error catastrophe, where they undergo a sharp drop in viability after a modest increase in mutation frequency. We recently showed that the important broad-spectrum antiviral drug ribavirin (currently used to treat hepatitis C virus infections, among others) is an RNA virus mutagen, and we proposed that ribavirins antiviral effect is by forcing RNA viruses into error catastrophe. However, a direct demonstration of error catastrophe has not been made for ribavirin or any RNA virus mutagen. Here we describe a direct demonstration of error catastrophe by using ribavirin as the mutagen and poliovirus as a model RNA virus. We demonstrate that ribavirins antiviral activity is exerted directly through lethal mutagenesis of the viral genetic material. A 99.3% loss in viral genome infectivity is observed after a single round of virus infection in ribavirin concentrations sufficient to cause a 9.7-fold increase in mutagenesis. Compiling data on both the mutation levels and the specific infectivities of poliovirus genomes produced in the presence of ribavirin, we have constructed a graph of error catastrophe showing that normal poliovirus indeed exists at the edge of viability. These data suggest that RNA virus mutagens may represent a promising new class of antiviral drugs.


Nature | 1999

Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen

Luis J. Sigal; Shane Crotty; Raul Andino; Kenneth L. Rock

Cytotoxic T lymphocytes (CTLs) are thought to detect viral infections by monitoring the surface of all cells for the presence of viral peptides bound to major histocompatibility complex (MHC) class I molecules. In most cells, peptides presented by MHC class I molecules are derived exclusively from proteins synthesized by the antigen-bearing cells. Macrophages and dendritic cells also have an alternative MHC class I pathway that can present peptides derived from extracellular antigens; however, the physiological role of this process is unclear. Here we show that virally infected non-haematopoietic cells are unable to stimulate primary CTL-mediated immunity directly. Instead, bone-marrow-derived cells are required as antigen-presenting cells (APCs) to initiate anti-viral CTL responses. In these APCs, the alternative (exogenous) MHC class I pathway is the obligatory mechanism for the initiation of CTL responses to viruses that infect only non-haematopoietic cells.


Journal of Immunology | 2003

Cutting Edge: Long-Term B Cell Memory in Humans after Smallpox Vaccination

Shane Crotty; Phil Felgner; Huw Davies; John Glidewell; Luis P. Villarreal; Rafi Ahmed

Memory B cells are a central component of humoral immunity, and yet little is known about their longevity in humans. Immune memory after smallpox vaccination (DryVax) is a valuable benchmark for understanding the longevity of B cell memory in the absence of re-exposure to Ag. In this study, we demonstrate that smallpox vaccine-specific memory B cells last for >50 years in immunized individuals. Virus-specific memory B cells initially declined postimmunization, but then reached a plateau ∼10-fold lower than peak and were stably maintained for >50 years after vaccination at a frequency of ∼0.1% of total circulating IgG+ B cells. These persisting memory B cells were functional and able to mount a robust anamnestic Ab response upon revaccination. Additionally, virus-specific CD4+ T cells were detected decades after vaccination. These data show that immunological memory to DryVax vaccine is long-lived and may contribute to protection against smallpox.


Immunity | 2014

T follicular helper cell differentiation, function, and roles in disease.

Shane Crotty

Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high-affinity antibodies and memory B cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs.


Journal of Experimental Medicine | 2006

Resolution of a chronic viral infection after interleukin-10 receptor blockade

Mette Ejrnaes; Christophe M. Filippi; Marianne M. Martinic; Eleanor Ling; Lisa Togher; Shane Crotty; Matthias von Herrath

A defining characteristic of persistent viral infections is the loss and functional inactivation of antiviral effector T cells, which prevents viral clearance. Interleukin-10 (IL-10) suppresses cellular immune responses by modulating the function of T cells and antigen-presenting cells. In this paper, we report that IL-10 production is drastically increased in mice persistently infected with lymphocytic choriomeningitis virus. In vivo blockade of the IL-10 receptor (IL-10R) with a neutralizing antibody resulted in rapid resolution of the persistent infection. IL-10 secretion was diminished and interferon γ production by antiviral CD8+ T cells was enhanced. In persistently infected mice, CD8α+ dendritic cell (DC) numbers declined early after infection, whereas CD8α− DC numbers were not affected. CD8α− DCs supported IL-10 production and subsequent dampening of antiviral T cell responses. Therapeutic IL-10R blockade broke the cycle of IL-10–mediated immune suppression, preventing IL-10 priming by CD8α− DCs and enhancing antiviral responses and thereby resolving infection without causing immunopathology.


Immunity | 2013

Human Circulating PD-1+CXCR3−CXCR5+ Memory Tfh Cells Are Highly Functional and Correlate with Broadly Neutralizing HIV Antibody Responses

Michela Locci; Colin Havenar-Daughton; Elise Landais; Jennifer E. Wu; Mark A. Kroenke; Cecilia S. Lindestam Arlehamn; Laura F. Su; Rafael Cubas; Mark M. Davis; Alessandro Sette; Elias K. Haddad; Pascal Poignard; Shane Crotty

The vast majority of currently licensed human vaccines work on the basis of long-term protective antibody responses. It is now conceivable that an antibody-dependent HIV vaccine might be possible, given the discovery of HIV broadly neutralizing antibodies (bnAbs) in some HIV-infected individuals. However, these antibodies are difficult to develop and have characteristics indicative of a high degree of affinity maturation in germinal centers (GCs). CD4⁺ T follicular helper (Tfh) cells are specialized for B cell help and necessary for GCs. Therefore, the development of HIV bnAbs might depend on Tfh cells. Here, we identified in normal individuals a subpopulation of circulating memory PD-1⁺CXCR5⁺CD4⁺ T cells that are resting memory cells most related to bona fide GC Tfh cells by gene expression profile, cytokine profile, and functional properties. Importantly, the frequency of these cells correlated with the development of bnAbs against HIV in a large cohort of HIV⁺ individuals.


Nature | 2003

SAP is required for generating long-term humoral immunity

Shane Crotty; Ellen N. Kersh; Jennifer L. Cannons; Pamela L. Schwartzberg; Rafi Ahmed

Long-lived plasma cells and memory B cells are the primary cellular components of long-term humoral immunity and as such are vitally important for the protection afforded by most vaccines. The SAP gene has been identified as the genetic locus responsible for X-linked lymphoproliferative disease, a fatal immunodeficiency. Mutations in SAP have also been identified in some cases of severe common variable immunodeficiency disease. The underlying cellular basis of this genetic disorder remains unclear. We have used a SAP knockout mouse model system to explore the role of SAP in immune responses. Here we report that mice lacking expression of SAP generate strong acute IgG antibody responses after viral infection, but show a near complete absence of virus-specific long-lived plasma cells and memory B cells, despite the presence of virus-specific memory CD4+ T cells. Adoptive transfer experiments show that SAP-deficient B cells are normal and the defect is in CD4+ T cells. Thus, SAP has a crucial role in CD4+ T-cell function: it is essential for late B-cell help and the development of long-term humoral immunity but is not required for early B-cell help and class switching.


Nature Immunology | 2010

Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation

Shane Crotty; Robert J. Johnston; Stephen P. Schoenberger

Bcl-6 and Blimp-1 have recently been identified as key transcriptional regulators of effector and memory differentiation in CD4+ T cells and CD8+ T cells. Bcl-6 and Blimp-1 were previously known to be critical regulators of effector and memory differentiation of B lymphocytes. The new findings unexpectedly point to the Bcl-6 and Blimp-1 regulatory axis as a ubiquitous mechanism for controlling effector and memory lymphocyte differentiation and function. Bcl-6 and Blimp-1 are antagonistic transcription factors and can function as a self-reinforcing genetic switch for cell-fate decisions. However, their influences in different lymphocytes are complex. Here we review and examine the commonalities and differences in the functions of these transcription factors in CD4+ follicular helper TFH lymphocytes, effector CD8+ T lymphocytes and B lymphocytes.

Collaboration


Dive into the Shane Crotty's collaboration.

Top Co-Authors

Avatar

Alessandro Sette

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Bjoern Peters

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Colin Havenar-Daughton

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raul Andino

University of California

View shared research outputs
Top Co-Authors

Avatar

Youn Soo Choi

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Michela Locci

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Johnston

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Yan Xiang

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge