Michael Hippke
University of Hawaii at Manoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Hippke.
The Astrophysical Journal | 2015
Michael Hippke
Despite the discovery of thousands of exoplanets, no exomoons have been detected so far. We test a recently developed method for exomoon search, the orbital sampling effect (OSE), using the full exoplanet photometry from the Kepler Space Telescope. The OSE is applied to phase-folded transits, for which we present a framework to detect false positives, and discuss four candidates which pass several of our tests. Using numerical simulations, we inject exomoon signals into real Kepler data and retrieve them, showing that under favorable conditions, exomoons can be found with Kepler and the OSE method. In addition, we super-stack a large sample of Kepler planets to search for the average exomoon OSE and the accompanying increase in noise, the scatter peak. We find a significant OSE-like signal, which might indicate the presence of moons, for planets with , having an average dip per planet of 6 ± 2 ppm, corresponding to a moon radius of km for the average star radius of 1.24 in this sample.
The Astrophysical Journal | 2016
Michael Hippke; Daniel Angerhausen; Michael B. Lund; Joshua Pepper; Keivan G. Stassun
We present a statistical analysis of the accuracy of the digitized magnitudes of photometric plates on the timescale of decades. In our examination of archival Johnson B photometry from the Harvard DASCH archive, we find a median rms scatter of light curves of the order of 0.15 mag over the range B ~ 9–17 for all calibrations. Slight underlying systematics (trends or flux discontinuities) are on a level of 0.2 mag per century (1889–1990) for the majority of constant stars. These historic data can be unambiguously used for processes that happen on scales of magnitudes, and need to be carefully examined in cases approaching the noise floor. The characterization of these limits in photometric stability may guide future studies in their use of plate archives. We explain these limitations for the example case of KIC 8462852, which has been claimed to dim by 0.16 mag per century, and show that this trend cannot be considered as significant.
Monthly Notices of the Royal Astronomical Society | 2017
Eva H. L. Bodman; Alice C. Quillen; Megan Ansdell; Michael Hippke; Tabetha S. Boyajian; Eric E. Mamajek; Eric G. Blackman; Aaron C. Rizzuto; Joel H. Kastner
We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass “dipper” stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar disks. Young low mass stars often exhibit rotating star spots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the star spot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disk temperatures computed at the disk corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the midplane to obscure the star which would account for the large fraction of young low mass stars that are dippers. We propose that variations in disk orientation angle, stellar magnetic field dipole tilt axis, and disk accretion rate are underlying parameters accounting for differences in the dipper light curves.
The Astrophysical Journal | 2014
Michael Hippke; J. G. Learned; A. Zee; William H. Edmondson; John F. Lindner; Behnam Kia; William L. Ditto; Ian R. Stevens
Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.
The Astrophysical Journal | 2017
René Heller; Michael Hippke
At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light (c) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio (σ) similar to graphene (7.6 × 10−4 gram m−2) in orbit around Proxima is about 13,800 km s−1 (4.6% c), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s−1) to Proxima. The size of such a low-σ sail required to carry a payload of 10 grams is about 105 m2 = (316 m)2. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.
The Astrophysical Journal | 2015
Michael Hippke; Daniel Angerhausen
Trojans are small bodies in planetary Lagrangian points. In our solar system, Jupiter has the largest number of such companions. Their existence is assumed for exoplanetary systems as well, but none have been found so far. We present an analysis by super-stacking ~4 × 103 Kepler planets with a total of ~9 × 104 transits, searching for an average Trojan transit dip. Our results give an upper limit to the average Trojan transiting area (per planet) that corresponds to one body of radius with confidence. We find a significant Trojan-like signal in a sub-sample for planets with more (or larger) Trojans for periods >60 days. Our tentative results can and should be checked with improved data from future missions like PLATO 2.0, and can guide planetary formation theories.
The Astrophysical Journal | 2016
René Heller; Michael Hippke; Brian Jackson
The orbital sampling effect (OSE) appears in phase-folded transit light curves of extrasolar planets with moons. Analytical OSE models have hitherto neglected stellar limb darkening and non-zero transit impact parameters and assumed that the moon is on a circular, co-planar orbit around the planet. Here, we present an analytical OSE model for eccentric moon orbits, which we implement in a numerical simulator with stellar limb darkening that allows for arbitrary transit impact parameters. We also describe and publicly release a fully numerical OSE simulator (PyOSE) that can model arbitrary inclinations of the transiting moon orbit. Both our analytical solution for the OSE and PyOSE can be used to search for exomoons in long-term stellar light curves such as those by Kepler and the upcoming PLATO mission. Our updated OSE model offers an independent method for the verification of possible future exomoon claims via transit timing variations and transit duration variations. Photometrically quiet K and M dwarf stars are particularly promising targets for an exomoon discovery using the OSE.
Astronomy and Astrophysics | 2016
René Heller; Michael Hippke; Ben Placek; Daniel Angerhausen; Eric Agol
We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet’s orbit around the planet–moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons’ pericenters is sufficiently slow. We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio. We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10% moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon’s own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.
The Astrophysical Journal | 2018
Michael Hippke; Daniel Angerhausen
We combine and calibrate publicly available data for Boyajians star including photometry from ASAS (SN, V, I), Kepler, Gaia, SuperWASP, and citizen scientist observations (AAVSO, HAO and Burke-Gaffney). Precise (mmag) photometry covers the years 2006-2017. We show that the year-long flux variations with an amplitude of ~4% can not be explained with cyclical symmetric or asymmetric models with periods shorter than ten years. If the dips are transits, their period must exceed ten years, or their structure must evolve significantly during each 4-year long cycle.
Monthly Notices of the Royal Astronomical Society | 2018
Duncan Forgan; René Heller; Michael Hippke
DF gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. This work was supported in part by the German space agency (Deutsches Zentrum fur Luft- und Raumfahrt) under PLATO Data Center grant 50OO1501.