Michael J. Axtell
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Axtell.
The Plant Cell | 2008
Blake C. Meyers; Michael J. Axtell; Bonnie Bartel; David P. Bartel; David C. Baulcombe; John L. Bowman; Xiaofeng Cao; James C. Carrington; Xuemei Chen; Pamela J. Green; Sam Griffiths-Jones; Steven E. Jacobsen; Allison C. Mallory; Robert A. Martienssen; R. Scott Poethig; Yijun Qi; Hervé Vaucheret; Olivier Voinnet; Yuichiro Watanabe; Detlef Weigel; Jian-Kang Zhu
MicroRNAs (miRNAs) are ∼21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs play critical roles in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interactions with specific target mRNAs. miRNAs are not the only Dicer-derived small RNAs produced by plants: A substantial amount of the total small RNA abundance and an overwhelming amount of small RNA sequence diversity is contributed by distinct classes of 21- to 24-nucleotide short interfering RNAs. This fact, coupled with the rapidly increasing rate of plant small RNA discovery, demands an increased rigor in miRNA annotations. Herein, we update the specific criteria required for the annotation of plant miRNAs, including experimental and computational data, as well as refinements to standard nomenclature.
Cell | 2003
Michael J. Axtell; Brian J. Staskawicz
Plants have evolved a sophisticated innate immune system to recognize invading pathogens and to induce a set of host defense mechanisms resulting in disease resistance. Pathogen recognition is often mediated by plant disease resistance (R) proteins that respond specifically to one or a few pathogen-derived molecules. This specificity has led to suggestions of a receptor-ligand mode of R protein function. Delivery of the bacterial effector protein AvrRpt2 by Pseudomonas syringae specifically induces disease resistance in Arabidopsis plants expressing the RPS2 R protein. We demonstrate that RPS2 physically interacts with Arabidopsis RIN4 and that AvrRpt2 causes the elimination of RIN4 during activation of the RPS2 pathway. AvrRpt2-mediated RIN4 elimination also occurs in the rps2, ndr1, and Atrar1 mutant backgrounds, demonstrating that this activity can be achieved independent of an RPS2-mediated signaling pathway. Therefore, we suggest that RPS2 initiates signaling based upon perception of RIN4 disappearance rather than direct recognition of AvrRpt2.
The Plant Cell | 2005
Michael J. Axtell; David P. Bartel
MicroRNAs (miRNAs) affect the morphology of flowering plants by the posttranscriptional regulation of genes involved in critical developmental events. Understanding the spatial and temporal dynamics of miRNA activity during development is therefore central for understanding miRNA functions. We describe a microarray suitable for detection of plant miRNAs. Profiling of Arabidopsis thaliana miRNAs during normal development extends previous expression analyses, highlighting differential expression of miRNA families within specific organs and tissue types. Comparison of our miRNA expression data with existing mRNA microarray data provided a global intersection of plant miRNA and mRNA expression profiles and revealed that tissues in which a given miRNA is highly expressed are unlikely to also show high expression of the corresponding targets. Expression profiling was also used in a phylogenetic survey to test the depth of plant miRNA conservation. Of the 23 families of miRNAs tested, expression of 11 was detected in a gymnosperm and eight in a fern, directly demonstrating that many plant miRNAs have remained essentially unchanged since before the emergence of flowering plants. We also describe an empirical strategy for detecting miRNA target genes from unsequenced transcriptomes and show that targets in nonflowering plants as deeply branching as ferns and mosses are homologous to the targets in Arabidopsis. Therefore, several individual miRNA regulatory circuits have ancient origins and have remained intact throughout the evolution and diversification of plants.
Nature Genetics | 2011
Xavier Argout; Jérôme Salse; Jean-Marc Aury; Mark J. Guiltinan; Gaëtan Droc; Jérôme Gouzy; Mathilde Allègre; Cristian Chaparro; Thierry Legavre; Siela N. Maximova; Michael Abrouk; Florent Murat; Olivier Fouet; Julie Poulain; Manuel Ruiz; Yolande Roguet; Maguy Rodier-Goud; Jose Fernandes Barbosa-Neto; François Sabot; Dave Kudrna; Jetty S. S. Ammiraju; Stephan C. Schuster; John E. Carlson; Erika Sallet; Thomas Schiex; Anne Dievart; Melissa Kramer; Laura Gelley; Zi Shi; Aurélie Bérard
We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.
Annual Review of Plant Biology | 2013
Michael J. Axtell
Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and function. A major distinction can be observed between small RNAs derived from single-stranded precursors with a hairpin structure [referred to here as hairpin RNAs (hpRNAs)] and those derived from dsRNA precursors [small interfering RNAs (siRNAs)]. hpRNAs in plants can be divided into two secondary groups: microRNAs and those that are not microRNAs. The currently known siRNAs fall mostly into one of three secondary groups: heterochromatic siRNAs, secondary siRNAs, and natural antisense transcript siRNAs. Tertiary subdivisions can be identified within many of the secondary classifications as well. Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research.
The Plant Cell | 2007
Michael J. Axtell; Jo Ann Snyder; David P. Bartel
Endogenous small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are critical components of plant gene regulation. Some abundant miRNAs involved in developmental control are conserved between anciently diverged plants, while many other less-abundant miRNAs appear to have recently emerged in the Arabidopsis thaliana lineage. Using large-scale sequencing of small RNAs, we extended the known diversity of miRNAs in basal plants to include 88 confidently annotated miRNA families in the moss Physcomitrella patens and 44 in the lycopod Selaginella moellendorffii. Cleavage of 29 targets directed by 14 distinct P. patens miRNA families and a trans-acting siRNA (ta-siRNA) was experimentally confirmed. Despite a core set of 12 miRNA families also expressed in angiosperms, weakly expressed and apparently lineage-specific miRNAs accounted for the majority of miRNA diversity in both species. Nevertheless, the molecular functions of several of these lineage-specific small RNAs matched those of angiosperms, despite dissimilarities in the small RNA sequences themselves, including small RNAs that mediated negative feedback regulation of the miRNA pathway and miR390-dependent ta-siRNAs that guided the cleavage of AUXIN RESPONSE FACTOR mRNAs. Diverse, lineage-specific, small RNAs can therefore perform common biological functions in plants.
Trends in Plant Science | 2008
Michael J. Axtell; John L. Bowman
MicroRNAs (miRNAs) are a specialized class of small silencing RNAs that regulate gene expression. They have a limited phylogenetic distribution among eukaryotes, suggestive of at least two independent origins from an ancestral small RNA-producing pathway. A set of 21 abundantly expressed miRNAs are clearly conserved among the angiosperms; many of these function to regulate transcription factors involved in developmental control. Recent experiments have uncovered a much larger set of weakly expressed, less conserved miRNAs in plants, and this group has provided insights into the origins of miRNAs and their targets. These data have provided a coherent set of hypotheses explaining the birth, selection and death of miRNAs in land plants.
Genome Biology | 2011
Michael J. Axtell; Jakub Orzechowski Westholm; Eric C. Lai
MicroRNAs are pervasive in both plants and animals, but many aspects of their biogenesis, function and evolution differ. We reveal how these differences contribute to characteristic features of microRNA evolution in the two kingdoms.
Molecular Microbiology | 2003
Michael J. Axtell; Stephen T. Chisholm; Douglas Dahlbeck; Brian J. Staskawicz
Upon delivery to the plant cell during infection, the Pseudomonas syringae effector protein AvrRpt2 undergoes proteolytic processing, enhances pathogen virulence and causes the elimination of the Arabidopsis RIN4 protein. A structure‐prediction method was employed in order to investigate possible biochemical functions of AvrRpt2. Results of a secondary structure prediction algorithm suggest that the functional C‐terminal portion of AvrRpt2 is a cysteine protease. Mutation of predicted catalytic residues within this portion of AvrRpt2 abolished in planta processing, elimination of Arabidopsis RIN4, and the ability to trigger an RPS2‐specific resistance response. These data indicate that AvrRpt2 is most likely a sequence divergent cysteine protease whose activity is required for elimination of RIN4 during infection.
Developmental Cell | 2002
Hailing Jin; Michael J. Axtell; Douglas Dahlbeck; Obi Ekwenna; Shuqun Zhang; Brian J. Staskawicz; Barbara Baker
Mitogen-activated protein kinase (MAPK) cascades are rapidly activated upon plant recognition of invading pathogens. Here, we describe the use of virus-induced gene silencing (VIGS) to study the role of candidate plant MAP kinase kinase kinase (MAPKKK) homologs of human MEKK1 in pathogen-resistance pathways. We demonstrate that silencing expression of a tobacco MAPKKK, Nicotiana Protein Kinase 1 (NPK1), interferes with the function of the disease-resistance genes N, Bs2, and Rx, but does not affect Pto- and Cf4-mediated resistance. Further, NPK1-silenced plants also exhibit reduced cell size, defective cytokinesis, and an overall dwarf phenotype. Our results provide evidence that NPK1 functions in the regulation of N-, Bs2-, and Rx-mediated resistance responses and may play a role in one or more MAPK cascades, regulating multiple cellular processes.