Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Cipriano is active.

Publication


Featured researches published by Michael J. Cipriano.


Science | 2007

Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia

Hilary G. Morrison; Andrew G. McArthur; Frances D. Gillin; Stephen B. Aley; Rodney D. Adam; Gary J. Olsen; Aaron A. Best; W. Zacheus Cande; Feng Chen; Michael J. Cipriano; Barbara J. Davids; Scott C. Dawson; Heidi G. Elmendorf; Adrian B. Hehl; Michael E. Holder; Susan M. Huse; Ulandt Kim; Erica Lasek-Nesselquist; Gerard Manning; Anuranjini Nigam; Julie E. J. Nixon; Daniel Palm; Nora Q.E. Passamaneck; Anjali Prabhu; Claudia I. Reich; David S. Reiner; John Samuelson; Staffan G. Svärd; Mitchell L. Sogin

The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardias requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardias genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.


Cell | 2010

The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

Lillian K. Fritz-Laylin; Simon Prochnik; Michael L. Ginger; Joel B. Dacks; Meredith L. Carpenter; Mark C. Field; Alan Kuo; Alexander R. Paredez; Jarrod Chapman; Jonathan K. Pham; Shengqiang Shu; Rochak Neupane; Michael J. Cipriano; Joel Mancuso; Hank Tu; Asaf Salamov; Erika Lindquist; Harris Shapiro; Susan Lucas; Igor V. Grigoriev; W. Zacheus Cande; Chandler Fulton; Daniel S. Rokhsar; Scott C. Dawson

Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naeglerias 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.


Nucleic Acids Research | 2007

RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes

Alexei E. Kazakov; Michael J. Cipriano; Pavel S. Novichkov; Simon Minovitsky; Dmitry V. Vinogradov; Adam P. Arkin; Andrey A. Mironov; Mikhail S. Gelfand; Inna Dubchak

RegTransBase is a manually curated database of regulatory interactions in prokaryotes that captures the knowledge in public scientific literature using a controlled vocabulary. Although several databases describing interactions between regulatory proteins and their binding sites are already being maintained, they either focus mostly on the model organisms Escherichia coli and Bacillus subtilis or are entirely computationally derived. RegTransBase describes a large number of regulatory interactions reported in many organisms and contains the following types of experimental data: the activation or repression of transcription by an identified direct regulator, determining the transcriptional regulatory function of a protein (or RNA) directly binding to DNA (RNA), mapping or prediction of a binding site for a regulatory protein and characterization of regulatory mutations. Currently, RegTransBase content is derived from about 3000 relevant articles describing over 7000 experiments in relation to 128 microbes. It contains data on the regulation of about 7500 genes and evidence for 6500 interactions with 650 regulators. RegTransBase also contains manually created position weight matrices (PWM) that can be used to identify candidate regulatory sites in over 60 species. RegTransBase is available at .


Nature | 2015

Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum

Sumiti Vinayak; Mattie C. Pawlowic; Adam Sateriale; Carrie F. Brooks; Caleb J. Studstill; Yael Bar-Peled; Michael J. Cipriano; Boris Striepen

Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.


Applied and Environmental Microbiology | 2006

Long Serial Analysis of Gene Expression for Gene Discovery and Transcriptome Profiling in the Widespread Marine Coccolithophore Emiliania huxleyi

Sonya T. Dyhrman; Sheean T. Haley; Shanda R. Birkeland; Louie L. Wurch; Michael J. Cipriano; Andrew G. McArthur

ABSTRACT The abundant and widespread coccolithophore Emiliania huxleyi plays an important role in mediating CO2 exchange between the ocean and the atmosphere through its impact on marine photosynthesis and calcification. Here, we use long serial analysis of gene expression (SAGE) to identify E. huxleyi genes responsive to nitrogen (N) or phosphorus (P) starvation. Long SAGE is an elegant approach for examining quantitative and comprehensive gene expression patterns without a priori knowledge of gene sequences via the detection of 21-bp nucleotide sequence tags. E. huxleyi appears to have a robust transcriptional-level response to macronutrient deficiency, with 42 tags uniquely present or up-regulated twofold or greater in the N-starved library and 128 tags uniquely present or up-regulated twofold or greater in the P-starved library. The expression patterns of several tags were validated with reverse transcriptase PCR. Roughly 48% of these differentially expressed tags could be mapped to publicly available genomic or expressed sequence tag (EST) sequence data. For example, in the P-starved library a number of the tags mapped to genes with a role in P scavenging, including a putative phosphate-repressible permease and a putative polyphosphate synthetase. In short, the long SAGE analyses have (i) identified many new differentially regulated gene sequences, (ii) assigned regulation data to EST sequences with no database homology and unknown function, and (iii) highlighted previously uncharacterized aspects of E. huxleyi N and P physiology. To this end, our long SAGE libraries provide a new public resource for gene discovery and transcriptional analysis in this biogeochemically important marine organism.


PLOS ONE | 2008

Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity.

Torsten Ochsenreiter; Michael J. Cipriano; Stephen L. Hajduk

The editing of trypanosome mitochondrial mRNAs produces transcripts necessary for mitochondrial functions including electron transport and oxidative phosphorylation. Precursor-mRNAs are often extensively edited by specific uridine insertion or deletion that is directed by small guide RNAs (gRNAs). Recently, it has been shown that cytochrome c oxidase subunit III (COXIII) mRNAs can be alternatively edited to encode a novel mitochondrial membrane protein composed of a unique hydrophilic N-terminal sequence of unknown function and the C-terminal hydrophobic segment of COXIII. To extend the analysis of alternative editing in Trypanosoma brucei we have constructed libraries with over 1100 full-length mitochondrial cDNAs and the sequences of over 1200 gRNA genes. Using this data, we show that alternative editing of COXIII, ATPase subunit 6 (A6), and NADH dehydrogenase subunits 7, 8 and 9 (ND7, 8, 9) mRNAs can produce novel open reading frames (ORFs). Several gRNAs potentially responsible for the alternative editing of these mRNAs were also identified. These findings show that alternative editing of mitochondrial mRNAs is common in T. brucei and expands the diversity of mitochondrial proteins in these organisms.


Molecular and Biochemical Parasitology | 2010

Transcriptome analyses of the Giardia lamblia life cycle

Shanda R. Birkeland; Sarah P. Preheim; Barbara J. Davids; Michael J. Cipriano; Daniel Palm; David S. Reiner; Staffan G. Svärd; Frances D. Gillin; Andrew G. McArthur

We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed constitutively. 71 transcripts were upregulated specifically during excystation and 42 during encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major differences. SAGE detected co-expressed clusters of 284 transcripts differentially expressed in cysts and excyzoites and 287 transcripts in vegetative trophozoites and encysting cells. All clusters included known genes and pathways as well as proteins unique to Giardia or diplomonads. SAGE analysis of the Giardia life cycle identified a number of kinases, phosphatases, and DNA replication proteins involved in excystation and encystation, which could be important for examining the roles of cell signaling in giardial differentiation. Overall, these data pave the way for directed gene discovery and a better understanding of the biology of G. lamblia.


BMC Genomics | 2013

RegTransBase -- a database of regulatory sequences and interactions based on literature: a resource for investigating transcriptional regulation in prokaryotes

Michael J. Cipriano; Pavel N Novichkov; Alexey E. Kazakov; Dmitry A. Rodionov; Adam P. Arkin; Mikhail S. Gelfand; Inna Dubchak

BackgroundDue to the constantly growing number of sequenced microbial genomes, comparative genomics has been playing a major role in the investigation of regulatory interactions in bacteria. Regulon inference mostly remains a field of semi-manual examination since absence of a knowledgebase and informatics platform for automated and systematic investigation restricts opportunities for computational prediction. Additionally, confirming computationally inferred regulons by experimental data is critically important.DescriptionRegTransBase is an open-access platform with a user-friendly web interface publicly available at http://regtransbase.lbl.gov. It consists of two databases – a manually collected hierarchical regulatory interactions database based on more than 7000 scientific papers which can serve as a knowledgebase for verification of predictions, and a large set of curated by experts transcription factor binding sites used in regulon inference by a variety of tools. RegTransBase captures the knowledge from published scientific literature using controlled vocabularies and contains various types of experimental data, such as: the activation or repression of transcription by an identified direct regulator; determination of the transcriptional regulatory function of a protein (or RNA) directly binding to DNA or RNA; mapping of binding sites for a regulatory protein; characterization of regulatory mutations. Analysis of the data collected from literature resulted in the creation of Putative Regulons from Experimental Data that are also available in RegTransBase.ConclusionsRegTransBase is a powerful user-friendly platform for the investigation of regulation in prokaryotes. It uses a collection of validated regulatory sequences that can be easily extracted and used to infer regulatory interactions by comparative genomics techniques thus assisting researchers in the interpretation of transcriptional regulation data.


PLOS Neglected Tropical Diseases | 2011

Novel Structural Components of the Ventral Disc and Lateral Crest in Giardia intestinalis

Kari D. Hagen; Matthew P. Hirakawa; Susan A. House; Cindi L. Schwartz; Jonathan K. Pham; Michael J. Cipriano; Moises J. De La Torre; Albert C. Sek; Gary Du; Brystal M. Forsythe; Scott C. Dawson

Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.


Mbio | 2015

Autophagy-Related Protein ATG8 Has a Noncanonical Function for Apicoplast Inheritance in Toxoplasma gondii

Maude F. Lévêque; Laurence Berry; Michael J. Cipriano; Hoa-Mai Nguyen; Boris Striepen; Sébastien Besteiro

ABSTRACT Autophagy is a catabolic process widely conserved among eukaryotes that permits the rapid degradation of unwanted proteins and organelles through the lysosomal pathway. This mechanism involves the formation of a double-membrane structure called the autophagosome that sequesters cellular components to be degraded. To orchestrate this process, yeasts and animals rely on a conserved set of autophagy-related proteins (ATGs). Key among these factors is ATG8, a cytoplasmic protein that is recruited to nascent autophagosomal membranes upon the induction of autophagy. Toxoplasma gondii is a potentially harmful human pathogen in which only a subset of ATGs appears to be present. Although this eukaryotic parasite seems able to generate autophagosomes upon stresses such as nutrient starvation, the full functionality and biological relevance of a canonical autophagy pathway are as yet unclear. Intriguingly, in T. gondii, ATG8 localizes to the apicoplast under normal intracellular growth conditions. The apicoplast is a nonphotosynthetic plastid enclosed by four membranes resulting from a secondary endosymbiosis. Using superresolution microscopy and biochemical techniques, we show that TgATG8 localizes to the outermost membrane of this organelle. We investigated the unusual function of TgATG8 at the apicoplast by generating a conditional knockdown mutant. Depletion of TgATG8 led to rapid loss of the organelle and subsequent intracellular replication defects, indicating that the protein is essential for maintaining apicoplast homeostasis and thus for survival of the tachyzoite stage. More precisely, loss of TgATG8 led to abnormal segregation of the apicoplast into the progeny because of a loss of physical interactions of the organelle with the centrosomes. IMPORTANCE By definition, autophagy is a catabolic process that leads to the digestion and recycling of eukaryotic cellular components. The molecular machinery of autophagy was identified mainly in model organisms such as yeasts but remains poorly characterized in phylogenetically distant apicomplexan parasites. We have uncovered an unusual function for autophagy-related protein ATG8 in Toxoplasma gondii: TgATG8 is crucial for normal replication of the parasite inside its host cell. Seemingly unrelated to the catabolic autophagy process, TgATG8 associates with the outer membrane of the nonphotosynthetic plastid harbored by the parasite called the apicoplast, and there it plays an important role in the centrosome-driven inheritance of the organelle during cell division. This not only reveals an unexpected function for an autophagy-related protein but also sheds new light on the division process of an organelle that is vital to a group of important human and animal pathogens. By definition, autophagy is a catabolic process that leads to the digestion and recycling of eukaryotic cellular components. The molecular machinery of autophagy was identified mainly in model organisms such as yeasts but remains poorly characterized in phylogenetically distant apicomplexan parasites. We have uncovered an unusual function for autophagy-related protein ATG8 in Toxoplasma gondii: TgATG8 is crucial for normal replication of the parasite inside its host cell. Seemingly unrelated to the catabolic autophagy process, TgATG8 associates with the outer membrane of the nonphotosynthetic plastid harbored by the parasite called the apicoplast, and there it plays an important role in the centrosome-driven inheritance of the organelle during cell division. This not only reveals an unexpected function for an autophagy-related protein but also sheds new light on the division process of an organelle that is vital to a group of important human and animal pathogens.

Collaboration


Dive into the Michael J. Cipriano's collaboration.

Top Co-Authors

Avatar

Shanda R. Birkeland

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew G. McArthur

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Dubchak

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge