Michael J. Edel
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Edel.
Nature Biotechnology | 2008
Trond Aasen; Angel Raya; Maria J. Barrero; Elena Garreta; Antonella Consiglio; Federico Gonzalez; Rita Vassena; Josipa Bili cacute; Vladimir Pekarik; Gustavo Tiscornia; Michael J. Edel; Stéphanie Boué; Juan Carlos Izpisua Belmonte
The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.
Cell | 2005
Mirjam T. Epping; Liming Wang; Michael J. Edel; Leone Carlée; Maria Hernandez; René Bernards
Retinoic acid (RA) induces proliferation arrest, differentiation, and apoptosis, and defects in retinoic acid receptor (RAR) signaling have been implicated in cancer. The human tumor antigen PRAME is overexpressed in a variety of cancers, but its function has remained unclear. We identify here PRAME as a dominant repressor of RAR signaling. PRAME binds to RAR in the presence of RA, preventing ligand-induced receptor activation and target gene transcription through recruitment of Polycomb proteins. PRAME is present at RAR target promoters and inhibits RA-induced differentiation, growth arrest, and apoptosis. Conversely, knockdown of PRAME expression by RNA interference in RA-resistant human melanoma restores RAR signaling and reinstates sensitivity to the antiproliferative effects of RA in vitro and in vivo. Our data suggest that overexpression of PRAME frequently observed in human cancers confers growth or survival advantages by antagonizing RAR signaling.
Human Gene Therapy | 2012
Adriana Sánchez‐Danés; Antonella Consiglio; Y. Richaud; Ignasi Rodríguez-Pizà; B. Dehay; Michael J. Edel; J. Bové; Maurizio Memo; Miquel Vila; Angel Raya; J.C. Izpisua Belmonte
Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) offer great hope for in vitro modeling of Parkinsons disease (PD), as well as for designing cell-replacement therapies. To realize these opportunities, there is an urgent need to develop efficient protocols for the directed differentiation of hESC/iPSC into dopamine (DA) neurons with the specific characteristics of the cell population lost to PD, i.e., A9-subtype ventral midbrain DA neurons. Here we use lentiviral vectors to drive the expression of LMX1A, which encodes a transcription factor critical for ventral midbrain identity, specifically in neural progenitor cells. We show that clonal lines of hESC engineered to contain one or two copies of this lentiviral vector retain long-term self-renewing ability and pluripotent differentiation capacity. Greater than 60% of all neurons generated from LMX1A-engineered hESC were ventral midbrain DA neurons of the A9 subtype, compared with ∼10% in green fluorescent protein-engineered controls, as judged by specific marker expression and functional analyses. Moreover, DA neuron precursors differentiated from LMX1A-engineered hESC were able to survive and differentiate when grafted into the brain of adult mice. Finally, we provide evidence that LMX1A overexpression similarly increases the yield of DA neuron differentiation from human iPSC. Taken together, our data show that stable genetic engineering of hESC/iPSC with lentiviral vectors driving controlled expression of LMX1A is an efficient way to generate enriched populations of human A9-subtype ventral midbrain DA neurons, which should prove useful for modeling PD and may be helpful for designing future cell-replacement strategies.
Genes & Development | 2010
Michael J. Edel; Cristina Menchón; Sergio Menendez; Antonella Consiglio; Angel Raya; Juan Carlos; Izpisua Belmonte
Human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), have the unique abilities of differentiation into any cell type of the organism (pluripotency) and indefinite self-renewal. Here, we show that the Rem2 GTPase, a suppressor of the p53 pathway, is up-regulated in hESCs and, by loss- and gain-of-function studies, that it is a major player in the maintenance of hESC self-renewal and pluripotency. We show that Rem2 mediates the fibroblastic growth factor 2 (FGF2) signaling pathway to maintain proliferation of hESCs. We demonstrate that Rem2 effects are mediated by suppressing the transcriptional activity of p53 and cyclin D(1) to maintain survival of hESCs. Importantly, Rem2 does this by preventing protein degradation during DNA damage. Given that Rem2 maintains hESCs, we also show that it is as efficient as c-Myc by enhancing reprogramming of human somatic cells into iPSCs eightfold. Rem2 does this by accelerating the cell cycle and protecting from apoptosis via its effects on cyclin D(1) expression/localization and suppression of p53 transcription. We show that the effects of Rem2 on cyclin D(1) are independent of p53 function. These results define the cell cycle and apoptosis as a rate-limiting step during the reprogramming phenomena. Our studies highlight the possibility of reprogramming somatic cells by imposing hESC-specific cell cycle features for making safer iPSCs for cell therapy use.
Cell Cycle | 2011
Cristina Menchón; Michael J. Edel; Juan Carlos Izpisua Belmonte
The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27Kip1 cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27Kip1 in hESC lead to a G1 phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27Kip1 caused an elongated/scatter cell-like phenotype involving upregulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27Kip1 protein occupies the Twist1 gene promoter and manipulation of p27Kip1 by gain and loss of function is associated with Twist gene expression changes. These results define p27Kip1 expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27Kip1 in controlling an epithelial to mesenchymal transition (EMT) in hESC.
Clinical & Experimental Metastasis | 2000
Michael J. Edel; Jennet Harvey; John M. Papadimitriou
It is well established that the ability of a neoplasm to induce a blood supply from a pre-existing circulation (angiogenesis) is a major factor in tumour growth, invasion and metastasis. However, the angiogenic potential of metastases and their subsequent growth have not been extensively studied. The question arises: can metastatic clones induce the same level of angiogenesis as in the primary neoplasm they emanated from? In this study it is hypothesised that in the same patient the level of vascularity and angiogenesis is the same in both the primary invasive ductal carcinoma and in the axillary lymph node metastasis at the time of surgery, according to Kerbels theory of clonal-dominance. To directly address the hypothesis, morphological measures of the established blood/lymphatic circulation (vascularity) as well as estimates of angiogenesis (endothelial cell proliferation) were measured in primary tumours and directly compared to the same parameters in the corresponding lymph node metastasis in a case by case basis (n=17). The results demonstrate varying associations between the level of vascularity and angiogenesis between matched individual tumours and their metastatic lymph nodal deposits. It is possible that either variations in the angiogenic characteristics of the metastasising clone or local or systemic promoters or inhibitors of angiogenesis influence tumour angiogenesis at the different sites.
Fibrogenesis & Tissue Repair | 2015
Ana Belen Alvarez Palomo; Samuel McLenachan; Fred K. Chen; Lyndon da Cruz; Rodney J. Dilley; Jordi Requena; Michaela Lucas; Andrew Lucas; Micha Drukker; Michael J. Edel
Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.
Journal of Clinical Medicine | 2015
Ricardo P. Casaroli-Marano; Nuria Nieto-Nicolau; Eva M. Martínez-Conesa; Michael J. Edel; Ana Belén Alvarez-Palomo
The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea’s transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement—cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)—present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD.
Journal of Clinical Medicine | 2015
Isart Roca; Jordi Requena; Michael J. Edel; Ana Belén Alvarez-Palomo
The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP) made from induced pluripotent stem cells (iPSCs) are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.
Stem Cells and Development | 2012
Samuel McLenachan; Cristina Menchón; Angel Raya; Antonella Consiglio; Michael J. Edel
The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A(1) protein expression of early-passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC-state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.