Michael J. Fryer
University of Essex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Fryer.
The Plant Cell | 1999
Gary Creissen; John L. Firmin; Michael J. Fryer; Baldeep Kular; Nicola Leyland; Helen Reynolds; Gabriela M. Pastori; Florence A. M. Wellburn; Neil R. Baker; A. R. Wellburn; Philip M. Mullineaux
Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted γ-glutamylcysteine synthetase (γ-ECS), foliar levels of GSH were raised threefold. Paradoxically, increased GSH biosynthetic capacity in the chloroplast resulted in greatly enhanced oxidative stress, which was manifested as light intensity–dependent chlorosis or necrosis. This phenotype was associated with foliar pools of both GSH and γ-glutamylcysteine (the immediate precursor to GSH) being in a more oxidized state. Further manipulations of both the content and redox state of the foliar thiol pools were achieved using hybrid transgenic plants with enhanced glutathione synthetase or glutathione reductase activity in addition to elevated levels of γ-ECS. Given the results of these experiments, we suggest that γ-ECS–transformed plants suffered continuous oxidative damage caused by a failure of the redox-sensing process in the chloroplast.
The Plant Cell | 2009
Gregorio Galvez-Valdivieso; Michael J. Fryer; Tracy Lawson; Katie Slattery; William Truman; Nicholas Smirnoff; Tadao Asami; William J. Davies; Alan M. Jones; Neil R. Baker; Philip M. Mullineaux
Previously, it has been shown that Arabidopsis thaliana leaves exposed to high light accumulate hydrogen peroxide (H2O2) in bundle sheath cell (BSC) chloroplasts as part of a retrograde signaling network that induces ASCORBATE PEROXIDASE2 (APX2). Abscisic acid (ABA) signaling has been postulated to be involved in this network. To investigate the proposed role of ABA, a combination of physiological, pharmacological, bioinformatic, and molecular genetic approaches was used. ABA biosynthesis is initiated in vascular parenchyma and activates a signaling network in neighboring BSCs. This signaling network includes the Gα subunit of the heterotrimeric G protein complex, the OPEN STOMATA1 protein kinase, and extracellular H2O2, which together coordinate with a redox-retrograde signal from BSC chloroplasts to activate APX2 expression. High light–responsive genes expressed in other leaf tissues are subject to a coordination of chloroplast retrograde signaling and transcellular signaling activated by ABA synthesized in vascular cells. ABA is necessary for the successful adjustment of the leaf to repeated episodes of high light. This process involves maintenance of photochemical quenching, which is required for dissipation of excess excitation energy.
Photochemistry and Photobiology | 1993
Michael J. Fryer
Abstract— The antioxidant vitamin E (α‐tocopherol) may protect both animal and plant cell membranes from light‐induced damage. The various biochemical and biophysical modes of protection are considered. An examination is made of the evidence that vitamin E plays an important prophylactic role against a number of serious light‐induced diseases and conditions of the eye (cataractogenesis and retinal photodeterioration) and skin (erythrocyte photohem‐olysis, photoerythema, photoaging and photocarcinogenesis) that are mediated by photooxidative damage to cell membranes.
Plant Physiology | 1995
Michael J. Fryer; Kevin Oxborough; Barry A. Martin; Donald R. Ort; Neil R. Baker
The photosynthetic productivity of maize (Zea mays) in temperate regions is often limited by low temperatures. The factors responsible for the sensitivity of photosynthesis in maize to growth at suboptimal temperature were investigated by measuring (a) the quantum yields of CO2 fixation and photosystem II (PSII) photochemistry, (b) the pigments of the xanthophyll cycle, (c) the concentrations of active and inactive PSII reaction centers, and (d) the synthesis of core components of PSII reaction centers. Measurements were made on fully expanded leaves grown at 14[deg]C, both before and during the first 48 h after transfer of these plants to 25[deg]C. Our findings indicate that zeaxanthin-related quenching of absorbed excitation energy at PSII is, quantitatively, the most important factor determining the depressed photosynthetic efficiency in 14[deg]C-grown plants. Despite the photoprotection afforded by zeaxanthin-related quenching of absorbed excitation energy, a significant and more persistent depression of photosynthetic efficiency appears to result from low temperature-induced inhibition of the rate at which damaged PSII centers can be replaced.
Biophysical Journal | 2002
Dimitri A. Svistunenko; Jacqueline Dunne; Michael J. Fryer; Peter Nicholls; Brandon J. Reeder; Michael T. Wilson; Maria Giulia Bigotti; Francesca Cutruzzolà; Chris E. Cooper
The reactions of hydrogen peroxide with human methemoglobin, sperm whale metmyoglobin, and horse heart metmyoglobin were studied by electron paramagnetic resonance (EPR) spectroscopy at 10 K and room temperature. The singlet EPR signal, one of the three signals seen in these systems at 10 K, is characterized by a poorly resolved, but still detectable, hyperfine structure that can be used to assign it to a tyrosyl radical. The singlet is detectable as a quintet at room temperature in methemoglobin with identical spectral features to those of the well characterized tyrosyl radical in photosystem II. Hyperfine splitting constants found for Tyr radicals were used to find the rotation angle of the phenoxyl group. Analysis of these angles in the crystal structures suggests that the radical resides on Tyr151 in sperm whale myoglobin, Tyr133 in soybean leghemoglobin, and either alphaTyr42, betaTyr35, or betaTyr130 in hemoglobin. In the sperm whale metmyoglobin Tyr103Phe mutant, there is no detectable tyrosyl radical present. Yet the rotation angle of Tyr103 (134 degrees) is too large to account for the observed EPR spectrum in the wild type. Tyr103 is the closest to the heme. We suggest that Tyr103 is the initial site of the radical, which then rapidly migrates to Tyr151.
Journal of Experimental Botany | 2013
Ulrike Bechtold; Waleed S. Albihlal; Tracy Lawson; Michael J. Fryer; P. A. C. Sparrow; François Richard; Ramona Persad; Laura Bowden; Richard Hickman; Cathie Martin; Jim Beynon; Vicky Buchanan-Wollaston; Neil R. Baker; James Morison; Friedrich Schöffl; Sascha Ott; Philip M. Mullineaux
Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H2O2 signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx.
Photosynthesis Research | 1995
James R. Andrews; Michael J. Fryer; Neil R. Baker
The light-harvesting chlorophyll a/b proteins associated with PS II (LHC II) are often considered to have a regulatory role in photosynthesis. The photosynthetic responses of four chlorina mutants of barley, which are deficient in LHC II to varying degrees, are examined to evaluate whether LHC II plays a regulatory role in photosynthesis. The efficiencies of light use for PS I and PS II photochemistry and for CO2 assimilation in leaves of the mutants were monitored simultaneously over a wide range of photon flux densities of white light in the presence and absence of supplementary red light. It is demonstrated that the depletions of LHC II in these mutants results in a severe imbalance in the relative rates of excitation of PS I and PS II in favour of PS I, which cannot be alleviated by preferential excitation of PS II. Analyses of xanthophyll cycle pigments and fluorescence quenching in leaves of the mutants indicated that the major LHC II components are not required to facilitate the light-induced quenching associated with zeaxanthin formation. It is concluded that LHC II is important to balance the distribution of excitation energy between PS I and PS II populations over a wide range of photon flux densities. It appears that LHC II may also be important in determining the quantum efficiency of PS II photochemistry by reducing the rate of quenching of excitation energy in the PS II primary antennae.
Methods of Molecular Biology | 2009
Steven M. Driever; Michael J. Fryer; Philip M. Mullineaux; Neil R. Baker
Reactive oxygen species (ROS) are involved in many signalling pathways and numerous stress responses in plants. Consequently, it is important to be able to identify and localize ROS in vivo to evaluate their roles in signalling. A number of probes that have a high affinity for specific ROS and that are effectively taken up by cells and tissues are commercially available. Applications to intact leaves of singlet oxygen sensor green (SOSG), nitroblue tetrazolium (NBT), di-amino benzidine (DAB) and Amplex Red to detect singlet oxygen, superoxide and hydrogen peroxide are described. Imaging of the probes in the cells and tissues of leaves allows sites of ROS production to be identified.
Plant Physiology | 2011
Thomas P. Howard; Michael J. Fryer; Prashant Singh; Metodi V. Metodiev; Anna Lytovchenko; Toshihiro Obata; Alisdair R. Fernie; Nicholas J. Kruger; William Paul Quick; Julie C. Lloyd; Christine A. Raines
The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants.
Nephrology | 2000
Michael J. Fryer
Progression to renal failure is significantly worsened by oxidative stress in chronic inflammatory kidney disease (IgA nephropathy, antiglomerular basement membrane nephritis, focal segmental glomerulosclerosis), rhabdomyolysis (myoglobinic acute renal failure), diabetic nephropathy and in poisoning by nephrotoxic compounds such as transition metals, paraquat and drugs such as cyclosporine A and cisplatin. The membrane antioxidant vitamin E (α‐tocopherol) is examined as a potential therapeutic intervention that may help to slow the rate of decline of kidney function in such conditions. An impaired plasma antioxidant defence system is characteristic of chronic renal failure and the uremic state. Vitamin E therapy is also considered as a means of correcting plasma antioxidant status and attenuating the cardiovascular disease that accompanies kidney failure.