Michael J. Gasson
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Gasson.
Applied and Environmental Microbiology | 2001
Tracy Eaton; Michael J. Gasson
ABSTRACT Enterococci are used as starter and probiotic cultures in foods, and they occur as natural food contaminants. The genusEnterococcus is of increased significance as a cause of nosocomial infections, and this trend is exacerbated by the development of antibiotic resistance. In this study, we investigated the incidence of known virulence determinants in starter, food, and medical strains of Enterococcus faecalis, E. faecium, andE. durans. PCR and gene probe strategies were used to screen enterococcal isolates from both food and medical sources. Different and distinct patterns of incidence of virulence determinants were found for the E. faecalis and E. faeciumstrains. Medical E. faecalis strains had more virulence determinants than did food strains, which, in turn, had more than did starter strains. All of the E. faecalis strains tested possessed multiple determinants (between 6 and 11). E. faecium strains were generally free of virulence determinants, with notable exceptions. Significantly, esp andgelE determinants were identified in E. faeciummedical strains. These virulence determinants have not previously been identified in E. faecium strains and may result from regional differences or the evolution of pathogenic E. faecium. Phenotypic testing revealed the existence of apparently silent gelE and cyl genes. In E. faecalis, the trend in these silent genes mirrors that of the expressed determinants. The potential for starter strains to acquire virulence determinants by natural conjugation mechanisms was investigated. Transconjugation in which starter strains acquired additional virulence determinants from medical strains was demonstrated. In addition, multiple pheromone-encoding genes were identified in both food and starter strains, indicating their potential to acquire other sex pheromone plasmids. These results suggest that the use of Enterococcus spp. in foods requires careful safety evaluation.
Molecular Microbiology | 1993
Jeremy Mark Wells; Peter W. Wilson; Pamela M. Norton; Michael J. Gasson; Richard W.F. Le Page
To determine if the food‐grade bacterium Lactococcus lactis holds promise as a vaccine antigen delivery vector we have investigated whether this bacterium can be made to produce high levels of a heterologous protein antigen. A regulated expression system has been developed which may be generally suitable for the expression of foreign antigens (and other proteins) In L. lactis. The system utilizes the fast‐acting T7 RNA polymerase to transcribe target genes, and provides the first example of the successful use of this polymerase in a Gram‐positive bacterium. When the performance of the expression system was characterized using tetanus toxin fragment C (TTFC) up to 22% of soluble cell protein was routinely obtained as TTFC. Mice immunized subcutaneously with L. lactis expressing TTFC were protected from lethal challenge with tetanus toxin. These results show for the first time that L. lactis is able to express substantial quantities of a heterologous protein antigen and that this organism can present this antigen to the Immune system in an immunogenic form.
Journal of Applied Microbiology | 2004
Desmond J. Fitzgerald; M. Stratford; Michael J. Gasson; J. Ueckert; A. Bos; Arjan Narbad
Aims: To investigate the mode of action of vanillin, the principle flavour component of vanilla, with regard to its antimicrobial activity against Escherichia coli, Lactobacillus plantarum and Listeria innocua.
Journal of Applied Microbiology | 2007
Giuseppina Mandalari; Richard N. Bennett; Giuseppe Bisignano; Domenico Trombetta; Antonella Saija; Craig B. Faulds; Michael J. Gasson; Arjan Narbad
Aims: To evaluate the antimicrobial properties of flavonoid‐rich fractions derived from bergamot peel, a byproduct from the Citrus fruit processing industry and the influence of enzymatic deglycosylation on their activity against different bacteria and yeast.
Letters in Applied Microbiology | 2004
R. M. La Ragione; Arjan Narbad; Michael J. Gasson; Martin J. Woodward
Aims: To test the efficacy of Lactobacillus johnsonii FI9785 in reducing the colonization and shedding of Salmonella enterica serotype Enteritidis, Escherichia coli O78:K80 and Clostridium perfringens in poultry.
Letters in Applied Microbiology | 2003
N.A. Olasupo; Desmond J. Fitzgerald; Michael J. Gasson; Arjan Narbad
Aims: The objective of this study was to evaluate the inhibitory activity of several natural organic compounds alone or in combination with nisin against Escherichia coli and Salmonella Typhimurium.
Microbiology | 1998
Arjan Narbad; Michael J. Gasson
A soil bacterium, designated Pseudomonas fluorescens AN103, was isolated based on its ability to grow on ferulic acid as a sole source of carbon and energy. In addition, this strain was found to metabolize a number of related phenolic substrates which contained a hydroxyl group at the para position of the aromatic ring. During growth on ferulic acid, transient accumulation of vanillic acid and trace amounts of protocatechuic acid were detected in the culture medium. Washed cells grown on ferulic acid readily oxidized vanillin, vanillic acid and protocatechuic acid, the three putative intermediates of the metabolic pathway. The side-chain cleavage of ferulic acid to produce vanillin was demonstrated in vitro for the first time and this enzyme-catalysed reaction was shown to have an essential requirement for CoASH, ATP and MgCl2. This conversion involved a two-step process involving a CoA ligase followed by the side-chain cleavage. The addition of NAD increased the oxidation of vanillin to vanillic acid and had an overall effect of increasing the rate of ferulic acid cleavage. The application of 13C-NMR studies in vitro revealed acetyl-CoA as the C2 side-chain cleavage product. High levels of inducible ferulate-CoA ligase and NAD-linked vanillin dehydrogenase were detected and a novel pathway for ferulic acid metabolism in this organism is proposed.
Journal of Biological Chemistry | 2002
Ana Rute Neves; Rita Ventura; Nahla Mansour; Claire Shearman; Michael J. Gasson; Christopher D. Maycock; Ana Raquel Ramos; Helena Santos
The involvement of nicotinamide adenine nucleotides (NAD+, NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using13C and 31P NMR to monitor in vivothe kinetics of the pools of NAD+, NADH, ATP, inorganic phosphate (Pi), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of13C-labeled NAD+ and NADH. The capacity ofL. lactis MG1363 to regenerate NAD+ was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH−deficient strain was constructed by double crossover. Upon supply of glucose, NAD+ was constant and maximal (∼5 mm) in the parent strain (MG1363) but decreased abruptly in the LDH− strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH− strain and NADH reached high levels (2.5 mm), reflecting severe limitation in regenerating NAD+. However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mm. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/Pi content could play an important role.
Molecular Genetics and Genomics | 1991
Nikki Horn; Simon Swindell; Helen M. Dodd; Michael J. Gasson
SummaryGenes for biosynthesis of the lactococcal peptide antibiotic nisin were shown to be encoded by a novel chromosomally located transposon Tn5301. The element is 70 kb in size and lacks inverted repeats at its termini. Although a copy of the insertion sequence IS904 is located near to one end, this did not appear to be involved in the transposition process. The integrated element is flanked by the directly repeated sequence 5′-TTTTTG-3′. Analysis of ten independent transconjugants revealed that Tn5301 integration is site-specific; two chromosomal targets were identified and shown to have some sequence homology. The element shares features with the Tn916 family of conjugative transposons and with Tn554 but is also exhibits some unique properties. Tn5301 is thus considered to be the prototype of a novel class of conjugative transposon.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1996
Oscar P. Kuipers; Gabriele Bierbaum; Birgit Ottenwälder; Helen M. Dodd; Nicky Horn; Jörg W. Metzger; Thomas Kupke; Volker Gnau; Roger S. Bongers; Patrick T.C. van den Bogaard; Hans Kosters; Harry S. Rollema; Willem M. de Vos; Roland J. Siezen; Günther Jung; Friedrich Götz; Hans-Georg Sahl; Michael J. Gasson
Whereas protein engineering of enzymes and structural proteins nowadays is an established research tool for studying structure-function relationships of polypeptides and for improving their properties, the engineering of posttranslationally modified peptides, such as the lantibiotics, is just coming of age. The engineering of lantibiotics is less straightforward than that of unmodified proteins, since expression systems should be developed not only for the structural genes but also for the genes encoding the biosynthetic enzymes, immunity protein and regulatory proteins. Moreover, correct posttranslational modification of specific residues could in many cases be a prerequisite for production and secretion of the active lantibiotic, which limits the number of successful mutations one can apply. This paper describes the development of expression systems for the structural lantibiotic genes for nisin A, nisin Z, gallidermin, epidermin and Pep5, and gives examples of recently produced site-directed mutants of these lantibiotics. Characterization of the mutants yielded valuable information on biosynthetic requirements for production. Moreover, regions in the lantibiotics were identified that are of crucial importance for antimicrobial activity. Eventually, this knowledge will lead to the rational design of lantibiotics optimally suited for fighting specific undesirable microorganisms. The mutants are of additional value for studies directed towards the elucidation of the mode of action of lantibiotics.