Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Giroux is active.

Publication


Featured researches published by Michael J. Giroux.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield

Eric D. Smidansky; Maureen Clancy; Fletcher D. Meyer; S. P. Lanning; N. K. Blake; L. E. Talbert; Michael J. Giroux

Yield in cereals is a function of seed number and weight; both parameters are largely controlled by seed sink strength. The allosteric enzyme ADP-glucose pyrophosphorylase (AGP) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed sink strength. Plant AGPs are heterotetrameric, consisting of two large and two small subunits. We transformed wheat (Triticum aestivum L.) with a modified form of the maize (Zea mays L.) Shrunken2 gene (Sh2r6hs), which encodes an altered AGP large subunit. The altered large subunit gives rise to a maize AGP heterotetramer with decreased sensitivity to its negative allosteric effector, orthophosphate, and more stable interactions between large and small subunits. The Sh2r6hs transgene was still functional after five generations in wheat. Developing seeds from Sh2r6hs transgenic wheat exhibited increased AGP activity in the presence of a range of orthophosphate concentrations in vitro. Transgenic Sh2r6hs wheat lines produced on average 38% more seed weight per plant. Total plant biomass was increased by 31% in Sh2r6hs plants. Results indicate increased availability and utilization of resources in response to enhanced seed sink strength, increasing seed yield, and total plant biomass.


Theoretical and Applied Genetics | 2002

Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype

B. Beecher; Arthur D. Bettge; Eric D. Smidansky; Michael J. Giroux

Abstract.Wheat grain hardness is a major factor in the wheat end-product quality. Grain hardness in wheat affects such parameters as milling yield, starch damage and baking properties. A single locus determines whether wheat is hard or soft textured. This locus, termed Hardness (Ha), resides on the short arm of chromosome 5D. Sequence alterations in the tryptophan-rich proteins puroindoline a and b (PINA and PINB) are inseparably linked to hard textured grain, but their role in endosperm texture has been controversial. Here, we show that the pinB-D1b alteration, common in hard textured wheats, can be complemented by the expression of wild-type pinB-D1a in transformed plants. Transgenic wheat seeds expressing wild-type pinB were soft in phenotype, having greatly increased friabilin levels, and greatly decreased kernel hardness and damaged starch. These results indicate that the pinB-D1b alteration is most likely the causative Ha mutation in the majority of hard wheats.


Nature Biotechnology | 2001

Expression of wheat puroindoline genes in transgenic rice enhances grain softness

Konduru Krishnamurthy; Michael J. Giroux

The puroindoline genes (pinA and pinB) are believed to play critical roles in wheat (Triticum aestivum L.) grain texture. Mutations in either gene are associated with hard wheat. No direct evidence exists for the ability of puroindolines to modify cereal grain texture. Interestingly, puroindolines appear to be absent in cereal species outside of the tribe Triticeae, in which the dominant form of grain texture is hard. To assess the ability of the puroindolines to modify cereal grain texture, the puroindolines were introduced into rice (Oryzae sativa L.) under the control of the maize ubiquitin promoter. Textural analysis of transgenic rice seeds indicated that expression of PINA and/or PINB reduced rice grain hardness. After milling, flour prepared from these softer seeds had reduced starch damage and an increased percentage of fine flour particles. Our data support the hypothesis that puroindolines play important roles in controlling wheat grain texture and may be useful in modifying grain texture of other cereals.


Molecular Plant-microbe Interactions | 2001

Wheat Puroindolines Enhance Fungal Disease Resistance in Transgenic Rice

Konduru Krishnamurthy; Carlotta Balconi; John E. Sherwood; Michael J. Giroux

Antimicrobial peptides play a role in the immune systems of animals and plants by limiting pathogen infection and growth. The puroindolines, endosperm-specific proteins involved in wheat seed hardness, are small proteins reported to have in vitro antimicrobial properties. Rice, the most widely used cereal crop worldwide, normally does not contain puroindolines. Transgenic rice plants that constitutively express the puroindoline genes pinA and/or pinB throughout the plants were produced. PIN extracts of leaves from the transgenic plants reduced in vitro growth of Magnaporthe grisea and Rhizoctonia solani, two major fungal pathogens of rice, by 35 to 50%. Transgenic rice expressing pinA and/or pinB showed significantly increased tolerance to M. grisea (rice blast), with a 29 to 54% reduction in symptoms, and R. solani (sheath blight), with an 11 to 22% reduction in symptoms. Puroindolines are effective in vivo in antifungal proteins and could be valuable new tools in the control of a wide range of fungal pathogens of crop plants.


Theoretical and Applied Genetics | 2004

Wheat puroindolines interact to form friabilin and control wheat grain hardness

Andrew C. Hogg; T. Sripo; B. Beecher; J. M. Martin; Michael J. Giroux

Wheat grain is sold based upon several physiochemical characteristics, one of the most important being grain texture. Grain texture in wheat directly affects many end use qualities such as milling yield, break flour yield, and starch damage. The hardness (Ha) locus located on the short arm of chromosome 5D is known to control grain hardness in wheat. This locus contains the puroindoline A (pina) and puroindoline B (pinb) genes. All wheats to date that have mutations in pina or pinb are hard textured, while wheats possessing both the ‘soft type’ pina-D1a and pinb-D1a sequences are soft. Furthermore, it has been shown that complementation of the pinb-D1b mutation in hard spring wheat can restore a soft phenotype. Here, our objective was to identify and characterize the effect the puroindoline genes have on grain texture independently and together. To accomplish this we transformed a hard red spring wheat possessing a pinb-D1b mutation with ‘soft type’ pina and pinb, creating transgenic isolines that have added pina, pinb, or pina and pinb. Northern blot analysis of developing control and transgenic lines indicated that grain hardness differences were correlated with the timing of the expression of the native and transgenically added puroindoline genes. The addition of PINA decreased grain hardness less than the reduction seen with added PINB. Seeds from lines having more ‘soft type’ PINB than PINA were the softest. Friabilin abundance was correlated with the presence of both ‘soft type’ PINA and PINB and did not correlate well with total puroindoline abundance. The data indicates that PINA and PINB interact to form friabilin and together affect wheat grain texture.


Planta | 2007

Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism

Eric D. Smidansky; Fletcher D. Meyer; Beth Blakeslee; Thaddeus Weglarz; Thomas W. Greene; Michael J. Giroux

ADP-glucose pyrophosphorylase (AGP) is the rate-limiting step in seed starch biosynthesis. Expression of an altered maize AGP large subunit (Sh2r6hs) in wheat (Triticum aestivum L.) results in increased AGP activity in developing seed endosperm and seed yield. The yield phenotype involves increases in both seed number and total plant biomass. Here we describe stimulation of photosynthesis by the seed-specific Sh2r6hs transgene. Photosynthetic rates were increased in Sh2r6hs-expressing plants under high light but not low light growth conditions, peaking at roughly 7 days after flowering (DAF). In addition, there were significant increases in levels of fructose, glucose, and sucrose in flag leaves at both 7 and 14 DAF. In seeds, levels of carbon metabolites at 7 and 14 DAF were relatively unchanged but increases in glucose, ADP-glucose, and UDP-glucose were observed in seeds from Sh2r6hs positive plants at maturity. Increased photosynthetic rates relatively early in seed development appear to be key to the Sh2r6hs enhanced yield phenotype as no yield increase or photosynthetic rate changes were found when plants were grown in a suboptimal light environment. These findings demonstrate that stimulation of biochemical events in both source and sink tissues is associated with Sh2r6hs expression.


Cereal Chemistry | 2000

Susceptibility of waxy starch granules to mechanical damage.

Arthur D. Bettge; Michael J. Giroux; Craig F. Morris

ABSTRACT Starch samples isolated from wheat flour that represented four possible waxy states (0, 1, 2, and 3-gene waxy) were subjected to crushing loads under both dry and wet conditions. Calibrated loads of 0.5–20 kg were applied to the starch samples and the percentage of damaged granules was visually determined. Under dry crushing conditions, starches containing amylose (0, 1, and 2-gene waxy) had between 1% (5-kg load) to 3% (15- and 20-kg load) damaged granules, whereas waxy starch (3- gene waxy; <1% amylose) began rupturing at 0.5-kg load (3.5% damaged granules) and had 13% damaged granules when ≥10-kg load was applied. Under wet crushing conditions, normal and partial waxy starch (0, 1, and 2-gene waxy) showed little difference in percentage of damaged granules when compared to the results of dry crushing. Waxy starch (3-gene waxy), however, showed substantially increased numbers of damaged granules: 12% damaged granules at 0.5-kg load, rising to 55% damaged granules at 15-kg load. The results indi...


Theoretical and Applied Genetics | 2001

Mapping and sequence analysis of barley hordoindolines

B. Beecher; Eric D. Smidansky; D. See; Tom Blake; Michael J. Giroux

Abstract Barley (Hordeum vulgare L.) cultivars vary in traits such as grain hardness and malt quality. However, little is known about the genetic basis of these grain quality traits in barley, while more is known about the basis of grain hardness in wheat (Triticum aestivum L.). Puroindolines are endosperm-specific proteins found in wheat and barley, as well as other members of the Triticeae. In wheat, variation of puroindoline sequence is associated with most of the variability in wheat grain texture. However, no information exists on sequence variation of the barley homologs of puroindolines, the hordoindolines. We have therefore chosen to isolate and characterize the hordoindoline (hin) sequences of eight North American barley cultivars. The barley sequences contain numerous non-conservative amino-acid substitutions relative to their wheat counterparts. However, no significant rearrangements were found in either hinA or hinB of barley. Three hinA and two hinB sequence types were found among the eight barley cultivars examined, indicating substantial allelic variation at this locus. The hinB sequence variability was used to map hinB to the short arm of chromosome 5H in a Steptoe/Morex mapping population, which is coincident with the previously mapped location of hinA and Gsp (grain-softness protein). This chromosomal location also coincides with a small barley malt-extract QTL, suggesting that hordoindoline sequence variation may play a small role in barley grain quality. Efforts to correlate barley seed textural differences and malting quality with hordoindoline sequence type are ongoing.


Theoretical and Applied Genetics | 2006

Complementation of the pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat.

J. M. Martin; Fletcher D. Meyer; Eric D. Smidansky; H. W. Wanjugi; A. E. Blechl; Michael J. Giroux

The tightly linked puroindoline genes, Pina and Pinb, control grain texture in wheat, with wild type forms of both giving soft, and a sequence alteration affecting protein expression or function in either giving rise to hard wheat. Previous experiments have shown that addition of wild type Pina in the presence of mutated Pinb gave intermediate grain texture but addition of wild type Pinb gave soft grain. This raises questions as to whether Pina may be less functional than Pinb. Our goal here was to develop and characterize wheat lines expressing the wild type Pina-D1a sequence in hard wheat with the null mutation (Pina-D1b) for Pina. Three transgenic lines plus Bobwhite were evaluated in two environments. Grain texture, grain protein, and kernel weight were determined for the transgenic lines and Bobwhite. The three transgenic lines had soft phenotype, and none of the transgenic lines differed from Bobwhite for grain protein or kernel weight. The soft phenotype was accompanied by increases in Pina transcript accumulation. Total Triton X-114 extractable PINA and PINB increased from 2.5 to 5.5 times those from a soft wheat reference sample, and friabilin, PINA and PINB bound to starch, increased from 3.8 to 7.8 times those of the soft wheat reference. Bobwhite showed no starch bound PINA, but transgenic lines had levels from 5.3 to 13.7 times those of the soft wheat reference sample. Starch bound PINB in transgenic lines also increased from 0.9 to 2.5 times that for the soft wheat reference sample. The transgenic expression of wild type Pina sequence in the Pina null genotype gave soft grain with the characteristics of soft wheat including increased starch bound friabilin. The results support the hypothesis that both wild type Pin genes need to be present for friabilin formation and soft grain.


Cereal Chemistry | 2006

Relationship of Dough Extensibility to Dough Strength in a Spring Wheat Cross

D. L. Nash; S. P. Lanning; P. Fox; J. M. Martin; N. K. Blake; Edward Souza; Robert A. Graybosch; Michael J. Giroux; L. E. Talbert

ABSTRACT A negative relationship between dough strength and dough extensibility would pose a problem for breeding hard wheats, as both dough strength and dough extensibility are desirable. We derived 77 recombinant inbred lines (RIL) from a cross between hard red spring wheat cultivars McNeal and Thatcher. McNeal produces flour with stronger dough and lower extensibility than does Thatcher. RIL were evaluated for strength-related properties using mixograph analysis and extensibility parameters using the Kieffer attachment to the TA.XT2 texture analyzer. Additionally, the RIL were test baked. Measurements using the mixograph and the Kieffer attachment were highly heritable. Maximum dough extensibility (Extmax) was negatively correlated with resistance to extension (Rmax) (r = -0.74) and with mixograph tolerance (r = -0.45). Loaf volume was correlated with both Rmax (r = 0.42) and area under the extensigraph curve (r = 0.44) based on partial correlation analysis adjusted for protein differences. Extmax was ...

Collaboration


Dive into the Michael J. Giroux's collaboration.

Top Co-Authors

Avatar

J. M. Martin

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. Hogg

Montana State University

View shared research outputs
Top Co-Authors

Avatar

L. E. Talbert

Montana State University

View shared research outputs
Top Co-Authors

Avatar

S. P. Lanning

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Smidansky

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Brian S. Beecher

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Leila Feiz

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge